fbpx

Science

Study Title
Effect of intermittent fasting and refeeding on insulin action in healthy men
Publication
Journal of Applied Physiology
Author(s)

Nils Halberg, Morten Henriksen, Nathalie Soderhamn, Bente Stallknecht, Thorkil Ploug, Peter Schjerling, and Flemming Dela

Abstract

Insulin resistance is currently a major health problem. This may be because of a marked decrease in daily physical activity during recent decades combined with constant food abundance. This lifestyle collides with our genome, which was most likely selected in the late Paleolithic era (50,000–10,000 BC) by criteria that favored survival in an environment characterized by fluctuations between periods of feast and famine. The theory of thrifty genes states that these fluctuations are required for optimal metabolic function. We mimicked the fluctuations in eight healthy young men [25.0 +/- 0.1 yr (mean +/- SE); body mass index: 25.7 +/- 0.4 kg/m2] by subjecting them to intermittent fasting every second day for 20 h for 15 days. Euglycemic hyperinsulinemic (40 mU.min-1.m-2) clamps were performed before and after the intervention period. Subjects maintained body weight (86.4 2.3 kg; coefficient of variation: 0.8 +/- 0.1%). Plasma free fatty acid and beta-hydroxybutyrate concentrations were 347 +/- 18 and 0.06 +/- 0.02 mM, respectively, after overnight fast but increased (P +/- 0.05) to 423 +/- 86 and 0.10 +/- 0.04 mM after 20-h fasting, confirming that the subjects were fasting. Insulin-mediated whole body glucose up- take rates increased from 6.3 +/- 0.6 to 7.3 +/- 0.3 mg.kg-1.min-1 (P +/- 0.03), and insulin-induced inhibition of adipose tissue lipolysis was more prominent after than before the intervention (P +/- 0.05). After the 20-h fasting periods, plasma adiponectin was increased compared with the basal levels before and after the intervention (5,922 +/- 991 vs. 3,860 +/- 784 ng/ml, P +/- 0.02). This experiment is the first in humans to show that intermittent fasting increases insulin- mediated glucose uptake rates, and the findings are compatible with the thrifty gene concept.

Date
December 11, 2008
View study

Share This

Related Topics

FastingInsulin Resistance

Dr. Perlmutter is one of the leading lights in medicine today, illuminating the path for solving chronic illness

Mark Hyman, MD