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Abstract 
Limiting post-meal glycemic response is an important factor        
in reducing the risk of chronic metabolic diseases, and         
contributes to significant health benefits in people with        
elevated levels of blood sugar. In this study, we collected gut           
microbiome activity (i.e., metatranscriptomic) data and      
measured the glycemic responses of 550 adults who        
consumed more than 30,000 meals from omnivore or        
vegetarian/gluten-free diets. We demonstrate that gut      
microbiome activity makes a statistically significant      
contribution to individual variation in glycemic response, in        
addition to anthropometric factors and the nutritional       
composition of foods. We describe predictive models       
(multilevel mixed-effects regression and gradient boosting      
machine) of variation in glycemic response among       
individuals ingesting the same foods. We introduce       
functional features aggregated from microbial activity data       
as candidates for association with mechanisms of glycemic        
control. In summary, we demonstrate for the first time that          
metatranscriptomic activity of the gut microbiome is       
correlated with glycemic response among adults. 

Introduction 
From a public health perspective, preventing elevated levels        
of blood glucose is a crucial part of mitigating the current           
epidemic of metabolic diseases including obesity, type 2        
diabetes, hypertension, cardiovascular and liver diseases.      
9.4% of the US population is diabetic and 26% is          
prediabetic, creating a large disease burden with associated        
healthcare costs [CDC 2017]. Daily food choices play the         
largest role in determining overall blood glucose levels and         
thus risk for various diseases ([Gutierrez 1998]; [Livesey        
2008]; [Jenkins 1985]; [Ludwig 2018]). Tools facilitating       

the mass adoption of dietary choices to maintain normal         
glycemic levels would be an important step towards halting         
the hyperglycemia epidemic. 
 
Popular nutritional understanding largely focuses on food       
characteristics alone, such as caloric and carbohydrate       
content. However, there is increasing evidence that glycemic        
response to the same foods differs significantly among        
individuals. Recent studies ([Zeevi 2015]; [Mendes-Soares      
2019]) have shown that postprandial glycemic response       
(PPGR) is not only driven by the glycemic index of food,           
but also the individuals’ phenotypic and molecular       
characteristics, including the gut microbiome which may       
have a role in energy metabolism and the regulation of          
insulin response [Suez 2016]. These studies evaluated       
postprandial glycemic response (PPGR) in the context of        
specific populations (Israeli and US midwestern), a small        
number of standardized meals, and 16S or metagenomic data         
from the gut microbiome. 
 
In this paper, we present data to demonstrate that the          
glycemic response to a range of foods varies based on          
individual differences including gut microbiome ​activity​,      
i.e., metatranscriptomics of the gut microbiome, and       
anthropometrics. The study presented here generalizes      
previous results to a significantly larger set of standardized         
meals (104 unique pre-designed meals) coming from two        
distinct diet types – omnivore and vegetarian/gluten-free.       
With the goal of being readily interpretable, this paper         
provides a concise statistical explanation of the relationship        
of nutrients, phenotypes, and gut microbiome activity with        
PPGR, through a multilevel mixed-effects regression model.       
We also present a gradient boosting machine model that has          
been optimized for predictive accuracy. Furthermore, we       
identify multiple significant ​functional microbiome features      
related to prediction of postprandial glycemic response,       
indicating that properties correlated with the microbiome       

*This study was performed while all authors were at Viome Inc. 
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affect the processing of carbs as well as leading to an overall            
difference in baseline blood sugar. 
 
The primary goal of this study was to determine the impact           
of microbial gene expression (at the functional level) on         
glycemic response. The most commonly used gut       
microbiome analysis method, the 16S rRNA gene       
sequencing, provides poor taxonomic resolution, typically      
genera that contain many strains with very diverse gene         
content [Knight 2018]. Metagenomic methods cannot      
identify some microorganisms (e.g. RNA viruses) and can        
only predict gene expression based on the gene content,         
which can be highly erroneous [Bervoets 2019]. We        

therefore used metatranscriptomics [Hatch 2019], which      
sequences RNA molecules and provides the primary       
sequence and read counts for each transcript, allowing us to          
use the data for quantitative strain-level taxonomic       
classification and functional pathway analysis ([Gosalbes      
2011]; [Bashiardes 2016]; [He 2010]). Due to the challenges         
posed by RNA instability, the necessity for removal of         
diverse ribosomal RNAs in stool samples, and complex        
bioinformatic analyses, metatranscriptomic methods have     
not been widely used in clinical studies. To our knowledge,          
this is the first study to demonstrate the application of gut           
metatranscriptomics in a population-scale dietary study. 
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Figure 1: Study Design and     
Population Characteristics 
 
1A ​. The study cohort had 550 adult       
participants (66% female). Each study     
participant provided a stool sample, filled out       
questionnaires, and made an office visit.      
Then over 14 days, participants consumed      
pre-designed meals that were provided, they      
monitored their blood glucose response, and      
they kept a diary of their meals, sleep, &         
activity. At the end of the study, all the data          
streams were fused, pre-processed, and     
analyzed as described in this paper. 

The following exclusion criteria were      
used: age<18; dietary restrictions that would      
prevent adherence to any of the study diets;        
antibiotic use 1 month prior to or during        
study; skin disease (e.g. contact dermatitis)      
that precludes proper attachment of the      
CGM; pregnancy; active neoplastic disease;     
active neuropsychiatric disorder; myocardial    
infarction or cerebrovascular accident in the      
6 months prior; pre-diagnosed type I or type        
II diabetes mellitus; HbA1c >= 6.5; or       
unwilling / incapable of following     
instructions. 
 
1B ​. Age distribution with mean of 43.8 years        
(SD 12.115). 
 
1C ​. 28% of the study population had BMI >         
25 and 18% had BMI > 30.  
 
1D ​. 4% of the study population were       
pre-diabetic with HbA1c% > 5.7. 
 
1E ​. Waist-to-hip ratio distribution with mean      
of 0.901 (SD 0.076) for men and 0.832 (SD         
0.071) for women. 
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Methods 
As shown in Figure 1, we recruited 550 adults (66% female),           
and tracked their food intake, sleep, activity, and glycemic         
response for up to 2 weeks. 400 participants were Caucasian,          
and of the remaining 150 participants, 37% were Asian, 33%          
were Hispanic, and 30% were Black or Other. The study’s          
Research Protocol was approved by an accredited IRB        
committee and all study participants consented to       
participating in the study. All study participants were at least          
18 years old. We obtained a stool sample at participation          
enrollment, as well as a comprehensive questionnaire       
describing their lifestyle, preferences, and health history. We        
collected blood glucose measurements every 15 minutes       
using a Continuous Glucose Monitor (CGM) sensor that        
measures glucose levels within the range of 40 to 500 mg/dL           
[Abbott 2016].  
 
Study Meals 
As described in Figure 2, participants were provided        
pre-designed breakfasts, snacks, and lunches (“provided      
meals”) over 14 days (“day 0” to “day 13”). After lunch,           
participants were allowed to eat whatever they wanted (“free         
meals”) without further guidance on the composition, and        
day 0 consisted of only free meals. Provided meals         
accounted for 66% of all meals and free meals 34%. 
 
Both provided and free meals were recorded by all         
participants during the entire study period, using a        
smartphone app (Bitesnap). We obtained macronutrient and       
micronutrient information from the smartphone app platform       
for further analysis. Provided meals were pre-loaded into the         
app. Free meals were loaded by users through selection of          
custom dishes, ingredients, and quantities. 
 
We asked the participants to not perform intense exercise 2.5          
hours before or 2.5 hours after meals, to not start probiotics           
or prebiotics, to not take vitamins or supplements during the          
study (with a specific detail to avoid interfering substances         
as defined in [Abbott 2016]), to not take over-the-counter         
medication, and to inform the study coordinator if they are          
prescribed antibiotics during the study. 
 
In order to test our methodology across a range of diets and            
to support a range of participant preferences, we provided         
two diet types – omnivore and vegetarian/gluten-free – in         
different phases of the study. We provided 104 unique         
pre-designed meals — 71 unique pre-designed meals in the         
omnivore diet in two separate waves, and 33 unique         
pre-designed meals in the vegetarian/gluten-free diet in one        

wave. 140 participants signed up for the omnivore diet and          
410 signed up for the vegetarian/gluten-free diet. 
 
To distribute macronutrients across all the meals, we        
designed the provided meals using a high (H) / low (L)           
determination of each of the 4 macronutrients – carbs, fiber,          
protein, and fat – as shown in Figure 2A. In this paper, we             
use the terms ​carbs and ​carbohydrates interchangeably to        
mean net carbohydrates, i.e. excluding fiber. High (H) and         
Low (L) were thresholded based on the proportion of each          
macronutrient and their daily recommended allowance. For       
example, day 1 breakfast was high (H), low (L), high (H),           
low (L), respectively, in carbs, fiber, protein, and fat. An          
example meal plan is shown in Figure 2B; o ​ver the 14 day            
period (day 0 consisted of only free meals), participants         
were provided with 39 meals, including one glucose drink.         
The distribution of macronutrients (Figure 2C) shows the        
coverage of the provided meals within the space of         
macronutrient proportions. 
 
Figure 2B includes 3 distinct meals that were repeated on          
days 1 and 8. A total of 9 distinct meals shown in Figure 2D              
were repeated over the course of the 14 day diet schedules           
(omnivore and vegetarian/gluten-free) to collect information      
regarding intra-person variability; each repeat meal was       
consumed twice by study participants. By design, these        
repeat meals were generally high in just one or two          
macronutrients.  
 
Figure 2E shows the data from all study sources for a single            
participant over two days, fused into a single visualization.         
This visualization helped the study administrators to visually        
inspect the data and ensure that data was properly captured          
and lined up. Based on this visual inspection, we observed          
that some of the CGMs malfunctioned with consistent lack         
of signal, or in some cases the smartphone app meal          
captured events were out of sync with the glucose curves,          
which indicated that the participant did not capture the data          
as instructed (at the point of meal consumption). In either of           
these cases, we discarded the respective meal data. 
 
Meal data was pre-processed as follows. After discarding        
meals that were clearly from malfunctioning CGMs or from         
erroneous data capture, we ended up with ​27630 ​total meals,          
with ​18208 provided meals and ​9422 free meals. All         
provided meals were at least 2.5 hours apart (participants         
were instructed). Free meals that were within 30 mins were          
merged, and those within 90 minutes of each other         
discarded. After all of this pre-processing, each participant        
provided an average of approximately 50 meals.  
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Microbiome Features 
Stool samples from participants were processed using our        
metatranscriptomic method [Hatch 2019] to yield raw       
microbiome data features including KEGG gene orthologs       
(or “KOs”) [KEGG] and microbial taxonomy. Our       
cloud-based bioinformatic pipeline performs read     
QC/trimming, host read filtering, and taxonomic      
classification at three taxonomic ranks (strain, species and        
genus) through sequence alignment to a custom database of         
more than 110,000 genomes. Functional assignments (KOs)       
are obtained through alignment to the IGC [Li 2014] and          
KEGG databases. For the samples provided by the 550         
participants in this study, 6587 unique microbial KOs were         
detected, a mean of 2941.9 per sample (s.d. 541.9); and 1047           
unique species were detected, with a mean of 122.7 (s.d.          
40.5).  
 
Collections of these raw microbiome data features were        
aggregated into custom microbiome scores designed to       

capture the collective functional characteristics as described       
in the literature. For example, the score ​microbiome balance​,         
is an aggregate assessment of overall ratios of active         
beneficial and harmful microbes, as well as some diversity         
metrics. This score is binary with a value of “Low” or           
“Normal”. All microbiome scores are generated by taking        
expression data as input, and applying an expert-designed        
scoring algorithm developed at Viome [Perlina ​et al, in         
prep.] to derive an overall activity level. 
Metabolic and signaling pathway activities are scored using        
expression levels of genes encoding specific protein       
functions (KEGG mappings are used primarily), compared       
with a reference cohort of samples supplied by Viome         
customers. Scores measure the quantity and expression       
levels of specific KEGG gene orthologs (KOs) selected due         
to their specific directional enzymatic roles, pathway       
topology, or significance in the functional literature. The        
more key genes expressed, and the higher their expression         
levels, the higher the resulting score. 
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 2C  

2D  

2E  
Figure 2: Study meal design and content  

2A ​. Percentage of each meal category within all 18,000+ provided meals. Categories were defined using proportions of Carbs                  
(H/L), Fiber (H/L), Proteins (H/L), and Fats (H/L). 

2B​. In this omnivore diet example, meals are shown for several of the provided macronutrient groups (carbs - fiber - protein - fat).                       
Meals with similar composition “types” were distributed across the schedule, and schedule days 1 and 8 were repeated meal days. 

2C ​. Macronutrient proportions of all 71 unique pre-designed omnivore meals (top, blue), all 33 unique pre-designed                
vegetarian/gluten-free meals (middle, blue), and all free meals (bottom, red). Provided meals account for 66% of all meals, and                   
free meals 34%. 

2D ​. Macronutrient information for the 9 “repeat meals” which were consumed twice by study participants. Actual servings were                  
adjusted based on the participant’s basal metabolic rate (BMR). 

2E​. Data collected for a single participant over 2 days (out of 14). Each row is a single day. The blue curve is the CGM reading                          
collected every 15 mins. Vertical bars are meal events, showing carbs proportion (blue), fat proportion (yellow), and protein                  
proportion (pink). The user interface also visualizes a picture of the meal and the nutrient details. Grey bars represent light and                     
deep sleep. The red histogram next to sleep bars is the tracked physical activity. 
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Results 
Meal Effects 
For the remainder of our analyses we look at ​incremental          
area under the curve (iAUC), a standard assessment of         
PPGR ([Cheng 2018]; [Wolever 1986]). We define this as         
the integrated area under the CGM curve over 120 minutes,          
relative to the baseline CGM measured at the time of the           
meal, i.e., the difference between the area above baseline         
and area below baseline. Note that this measurement can be          
negative due to decline in blood sugar level below the          
baseline over time, especially after activity, and due to noise          
from the measurement device. The actual iAUC values for         
all meals, the repeated meals from Figure 2D, and the          
glucose drink are shown in Figure 3A.  
 
Figure 3B was constructed after modeling iAUC with        
standardized macronutrient values (i.e., z-scores). Linear      
regression of iAUC on all four of the standardized         
macronutrients was performed at each timepoint after the        
meal. The plot shows the learned weights for each of the           
standardized macronutrients at each of these timepoints, and        
this reveals the magnitude and time-course of the        
macronutrient effects. Meals with more carbohydrates led to        
increased postprandial glucose (PPG), peaking 45 minutes       
after the meal, while meals with more fiber led to a           
diminished and delayed PPG. Protein and fat suppress and         
delay the response as shown. 
 
Figure 3C illustrates the variability in responses to a single          
meal, for all meals that were repeated within the provided          
diet (Figure 2D). Intra-person variability is the difference in         
a participant’s response to a single meal when eaten on two           
occasions. 
 
Predictive Model Development and Evaluation 
In this section we first present a linear ​multilevel         
mixed-effects or ​hierarchical model [Gelman 2007] of       
PPGRs based on the data described above. The linear model          
allows us to provide a concise description of the         
relationships between nutrients, anthropometrics,    
microbiome activity, and PPGR. Additionally, it allows us to         
derive significance statistics testing the hypotheses that each        
predictor is relevant in the determination of the PPGR. 

 
Importantly, the inclusion of ​random effects captures       
individual variation in PPGR due to unobserved factors        
(unknown properties of the individual, meal, or       
measurement devices) that may affect the outcome.       
Including random effects is essential in order to derive         
conservative hypothesis tests of both the relevance and        
magnitude of our fixed effects, especially in a        
repeated-measures design where each person and each meal        
provide many data points. Our experimental design calls for         
a multilevel model because of this repetition; each PPGR         
observation is at a lower level nested within one person and           
within one meal (higher levels), in a ​crossed ​or ​fully          
factorial ​experimental design (see Figure 4A)​. For example,        
without the multilevel model we could not conclusively test         
the importance of any variable that is constant across all data           
taken from one person, such as microbiome features. 
 
Model development was performed using the ​lme4 package        
in R [​Bates 2015]. ​The model was built incrementally. In the           
first pass, we determined appropriate transformations for the        
nutritional and anthropometric variables by visualizing the       
relationship between each predictor and the iAUC. The        
effect of carbohydrates appeared to be well-described by the         
square root transformation, while other predictors were left        
untransformed. We then fitted a model of these nutritional         
and anthropometric predictors as fixed effects, and random        
intercepts and slopes allowing the nutritional effects to vary         
between people and the anthropometric effects to vary        
between meals. Likelihood ratio tests showed no evidence        
for any random slopes of anthropometrics by meal (i.e.,         
responses to all meals are similarly influenced by the         
participant’s age, BMI, etc). 
 
As the largest effects were associated with carbs, in the          
second pass we introduced interactions between that and all         
other nutrients as fixed effects, and with random slopes by          
participant. Based on visual inspection of their relationship        
with iAUC, we also introduced fixed effects of two         
response-level “context” measurements, ​minutes of activity      
during the 2 hours following the meal and ​minutes of sleep           
during the 3 hours before the meal​. ​We removed effects not           
significant by likelihood ratio test at ​p<.05​. 
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Figure 3: Overview of postprandial glycemic response data 
3A ​. iAUC values (in mg / dl-h) for all meals, provided and free (red bar); the 9 repeated meals from Figure 2D, (blue bars); and                         
the glucose drink (green bar). Boxplots show the interquartile range; whiskers cover the middle 95th percentile. 
3B​. Marginal effect of macronutrients on glucose response over time, across all meals, across all participants. Each timepoint is 
a linear regression of iAUC on all four standardized macronutrients. 
3C ​. Inter- and intra-person variability for 9 repeated provided meals. X axis is the mean absolute difference in iAUC. Points 
indicate the mean absolute difference in response between two consumptions of the meal by one person (green), and mean 
absolute difference in response between all pairs of different people (blue). Bars indicate standard error. Y axis is in descending 
order of difference between inter-person and intra-person variability. 
3D ​. Examples of individual variation in glycemic response. Ingestion of two of the repeated meals (blue and green lines) result 
in opposite blood glucose response in two participants (top).  Ingestion of two free meals results in opposite blood glucose 
response in two participants (bottom).  
3E​. Relationships between anthropometric characteristics and per-participant average iAUC across all meals (provided free). 
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In the third pass, we introduced fixed effects of our          
microbiome features, a number of expert-designed scores       
measuring the activity of crucial metabolic pathways and        
functions (see discussion section below). We determined a        
candidate set of scores to add to the model by predicting           
participants’ average iAUC from each score using t-test        
(binary) or regression (continuous). 15 scores showed a        
significant association taken alone and were tested in the full          
model. After controlling for all other predictors, 6 remained         
significant or marginally significant. 
 
The final model fixed-effect coefficients are displayed in        
Figure 4B. Positive coefficients indicate a greater predicted        
glycemic response. All predictors were significant by       
likelihood-ratio test at ​p<.05​, except for glutamine       
production pathways (​p=.08​) and the interaction between       
tyrosine metabolizers and carbs (​p=.06​) which are kept in         
this model as suggestive, and do not substantially affect the          
estimation of other coefficients. 
 
Several of the significant predictors were microbiome       
scores. One of the scores, named microbiome balance, is an          
aggregate assessment of microbiome balance quantifying      
overall beneficial and harmful activities (based on the        
literature), as well as some diversity metrics. This score,         
when “Low,” showed a negative association with glycemic        
response. Two other scores are quantified pathway activities        
representative of overall activity levels of a given set of          
microbial pathways. 
 
The fucose metabolism pathways activity score considers       
expression levels of all the genes that encode enzymes         
known to carry out biochemical reactions that result in         
processing and catabolic conversions of fucose – a glycan         
that microbes may obtain from the host’s gut lining mucosal          
layer, or food components. This quantitative score showed a         
positive association with glycemic response. 
 
The indoleacetate production pathways activity score      
considers expression levels of all the genes that encode         
enzymes known to carry out biochemical reactions that        
result in production of indole-acetate (or indole acetic acid,         
IAA). This binary score, when “High,” showed a negative         
association with glycemic response. 

 
The marginally significant score of glutamine production       
pathways implies higher glycemic response when “Low.”       
The score is derived with the same approach as the          
indoleacetate score, and assess the levels of activity of         
various pathway axes leading to microbial production of        
glutamate (or glutamic acid). 
 
Microbial scores for tyrosine and fructose metabolizers are        
based on functional groups of active microbes known to         
metabolize tyrosine and fructose, respectively. Tyrosine      
metabolizers, when “Low,” are directly related to elevated        
PPGR. Fructose metabolizers, when “Low,” show an inverse        
relationship to glycemic response. 
 
Figure 4C compares different approaches to predicting       
iAUC. The first two plots show single predictor models         
(calories or carbs). We also present predictions from the         
fixed-effect part of our model after zeroing out certain         
components. Using all nutrient predictors achieves a similar        
fit to using the square root of carbs alone (both R=.41, not            
pictured). Including the microbiome features yields a small        
but significant improvement in fit (R=.42, not pictured), and         
adding the other fixed effect predictors (age, BMI, sleep,         
activity, microbiome) improves the fit further (R=.45, Fig.        
4C bottom-left). Finally, the full model including random        
effects (best linear unbiased predictions) fits the data very         
well (R=.77, Fig. 4C bottom-right). 
 
Figure 4D (left) shows the influence of age on the modelled           
relationship between carbs and glycemic response. Figure       
4D (right) illustrates the extent of modeled individual        
differences in this relationship, taking into account all        
predictors. Two hypothetical meals A and B (similar to         
repeat meals from Figure 2D with carbs approximately 25g         
and 50g respectively) are shown to illustrate that two users          
(blue and red lines) have the opposite glycemic responses         
(iAUC of 14 & 20 vs iAUC of 37 & 27 respectively) due to              
the crossover of their iAUC response lines between the two          
meals ​— this effect was shown in Figure 3D using the raw            
data.  
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4B    

4D  

      

4C  
 4E  

Figure 4. Models for predicting PPGR  
4A ​. Nesting of predictors in our repeated-measures crossed experimental design.    Plates (boxes) indicate repetition: e.g., there is one measurement of carbs, 
protein, fiber, fat for each meal.  Arrows indicate the possibility of dependence: here, PPGR is estimated as a function of all other variables.  ​4B ​. Fixed effect 
estimates for all predictors included in the final model. Continuous predictors are standardized (mean is zero, units are standard deviations), meaning the 
expected response changes by the value of the coefficient when the predictor changes by one standard deviation. All microbiome scores except ​fucose ​ are 
binary scores, meaning the coefficient is the difference in expected response between the two levels of the score. Error bars show standard error of the estimate. 
4C ​: Actual glycemic response (iAUC) against (a) calories, (b) carbs, (c) predictions from the model including all fixed effects (standard linear regression), and 
(d) the fit of the full mixed-effects model.  ​4D ​. (left) Model predictions as a function of carbs and age, holding all other predictors at the baseline. (right) Model 
predictions as a function of carbs for 10 randomly sampled people, taking into account all person-level fixed and random effects and holding all other nutrient 
and context variables at the baseline. Two users are highlighted (red and blue) to draw attention to the flip in their predicted response to the two example meals 
A & B annotated in yellow.  ​4E ​: Actual vs predicted iAUC for a gradient boosting machine (GBM) model.  Performance shown is on the best test fold across 5 
random splits, with data from 82% of the users used to train and 18% held out for evaluation. 
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A model optimized for prediction accuracy over       
explanation 
As described above, mixed effects linear models are        
valuable because they are easily interpreted and allow        
statements about the statistical significance of predictors. In        
this section we present another model for the same data          
which does not offer these benefits but achieves greater         
predictive accuracy due to its richer modeling framework.        
This is a ​gradient boosting machine [Chen 2016] built on the           
same predictors already discussed as well as a number of          
additional features. These encompass the microbiome      
(activity of individual organisms and genes), nutrients       
(weight of meal; subtypes of carbs and fats; micronutrients;         
specific compounds like caffeine and alcohol), and context        
(more detailed representations of sleep and activity).       
Following [Zeevi 2015] we also add two further predictors         
encoding prior blood glucose levels: the CGM reading        
immediately before the meal, and the slope of the linear          
change in CGM readings over the previous 90 minutes.         
After removing predictors that are low variance, highly        
correlated with each other, or not correlated with the         
outcome, a total of 1446 were included in the model. 
 
Data from 82% of users was used to train, with the data from             
the remaining 18% held out for evaluation. Hyperparameters        
controlling learning rate, number of trees and tree depth         
were estimated using cross validation on the training set.  
 
Averaging across 5 such random train/test splits of the data,          
the model achieves R=.80 (R​2​=.64) on training data, and         
R=.64 (R​2​=.40) on held-out test data. Performance on        
training and test data is shown in Figure 4E. 

Discussion 
We set out to study the variation of glycemic response based           
on individual differences, especially differences in gut       
microbiome activity obtained via the metatranscriptomic      
method for the first time. We made a few key design choices            
for the study, including (a) 14 days of monitoring, (b)          
multiple diet types – omnivore and vegetarian/gluten-free,       
and (c) a large proportion (66%) of “provided”        
(pre-designed) meals. 
 
The number of provided meals (104) is considerably larger         
in our study compared to previous studies (e.g. [Zeevi         
2015]; [Mendes-Soares 2019] had only 4 standardized       
meals). This design allowed us to get more precise readings          
of consumed meals rather than entirely depending on the         
smartphone diet tracking app. This choice also ensures that         

our data allows us to quantify individual PPGR differences         
between people in response to the same food, reducing the          
risk that observed differences reflect differences between       
participants’ diets. Secondly, as shown in Figure 2A, we         
wanted to design a diet plan that provided broad coverage of           
the space of macronutrient proportions (carbs, fiber, protein,        
fat) with the intention of teasing out the independent and          
interacting effects of the macronutrients. And finally, we        
needed more control of meals since we also wanted to study           
the effect of multiple diet types: omnivore and        
vegetarian/gluten-free (this is ongoing work, not reported       
here). 
 
It is evident from our data that accounting for individual          
differences is crucial in providing a full description of         
PPGRs. We designed 9 specific meals, each of which was a           
combination of food staples (Figure 2D), that were        
consumed twice by all participants. While ​intra ​-person       
variability for a given meal is substantial (Figure 3C, green),          
this variability is small relative to the ​inter-​person variability         
for the same meals (blue). We can conclude that while many           
factors affect PPGRs, some of these factors are individual         
differences which must be accounted for by differences        
between people and their lifestyles, not properties of the         
meal alone. The two meals where intra-person variability is         
close to inter-person variability are meals that contain little         
to no carbohydrates. 
 
Relationships between iAUC and phenotype and food       
features 
We see the expected relationship between age and iAUC in          
Figure 3E, first panel. The relationship between iAUC and         
BMI / waist-to-hip ratio (Figure 3E second and third panels)          
is the opposite of that previously reported in studies such as           
[Zeevi 2015]. We hypothesize that this may reflect the         
self-reported good health and high exercise rate within this         
study population. We see the expected increase in average         
iAUC with HbA1c in our study population (Figure 3E,         
fourth panel). However, in our analysis there is no         
significant effect of HbA1c on iAUC after controlling for         
other predictors. This may be because the study population         
was selected for HbA1c in the normal range (< 6.5). 
 
As expected, the bulk of variation in the response is          
explained by the amount of carbs ingested, and by         
interactions with fat content in food and other factors that          
modulate the effect of carbs. Increased fiber resulted in         
overall lower PPGRs, and while increased fat had little         
marginal effect by itself, it interacts with carbs to suppress          
the effect of ingested carbs on the PPGR. The plot of the            
time-course of this effect in Figure 3B suggests this may          
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happen because fat and protein flatten and delay the         
digestion of carbs, pushing some of the PPGR out of the 2            
hour window considered here ([Franz 1997]; [Wakhloo       
1984]). Protein has a numerically negative effect on iAUC         
but is not significant after controlling for other predictors, so          
was removed from the final model. Older people had higher          
PPGRs, and also higher PPGRs per unit of carbs ingested          
(Figure 4D). Activity after meal consumption as well as         
sleep immediately before eating both resulted in lower        
PPGR to carbs, which is consistent with literature on         
metabolic effects of circadian rhythms [Van Cauter 1997]. 
 
The fact that the PPGR is better predicted by the square root            
of carbs than untransformed carbs is reminiscent of a         
standard model of gastric emptying in which the volume of          
food passing from the stomach per unit of time is linear in            
the square root of its volume [Hopkins 1966].  
 
Relationships between iAUC and microbiome features 
The significant microbiome features related to prediction of        
postprandial glycemic response were microbiome balance,      
fucose metabolism pathways, fructose metabolizers, tyrosine      
metabolizers (marginal), indoleacetate production pathways,     
and glutamine production pathways (marginal). Of these,       
fucose, indoleacetate, and tyrosine (marginal) scores interact       
with carbs, indicating that the microbiome or properties        
correlated with the microbiome affect the processing of        
carbs as well as leading to an overall difference in baseline           
blood sugar. 
 
The microbiome balance score was one of the significant         
features in predicting glycemic response. Low microbiome       
balance scores usually result from either an imbalance of         
relative activities of beneficial vs. harmful microbes or from         
lower quantity and diversity of microbial organisms. The        
relationship of suboptimal overall gut microbiome and       
higher PPGR is in line with the current literature [Karlsson          
2013; ​Larsen 2010; ​Vrieze 2012​] ​implicating the role of gut          
health in glycemic regulation. 
 
The fucose metabolism pathway score showed a direct        
relationship with PPGR. Fucose is a sugar molecule that         
various microbial organisms can use as an energy source         
[Chen 1987]. When other carbohydrate sources are not        
available, gut microbiota can switch to using the fucose that          
can be obtained from the host’s gut mucosal lining. This          
process is often carried out by microbes known as mucin          
degraders, such as certain species of genus Ruminococcus        
[Crost 2016]. We therefore hypothesize that higher fucose        
consumption activity, as reflected by the microbiome       
pathway score, may be associated with microbiomes of        

those individuals who are either more likely to fast or whose           
internal ecosystem and overall body state resembles the        
conditions of fasting or calorie deprivation. This may        
explain its association with higher PPGR. More research is         
needed to establish relationships between microbial      
metabolism of gut sugars and the host’s tendency to show          
higher glucose spikes in the blood after meals. 
 
The indoleacetate production pathways score incorporates      
the role and significance of expressed genes in the context of           
microbial indoleacetate production. The algorithm takes all       
the known pathway axes that ultimately lead to microbial         
production of compounds of type indole acetic acids (IAAs)         
and scores them using gene expression as input data. In the           
case of indole acetate production, the result shows that when          
such pathways score “High” in activity, the glycemic        
response to the given food is lower. This is consistent with           
known anti-inflammatory properties of IAA [Krishnan 2018;       
Whitfield-Cargile 2016]. Inflammatory activities in the gut       
and their consequential potential to cause systemic       
low-grade inflammation are implicated in the development       
of Type 2 Diabetes and other metabolic disorders [Gonzalez         
2018; Tuomainen 2018]. Moreover, there are direct       
implications of IAAs in glycemic response, and some        
findings suggest hypoglycemic action of indole-3-acetic acid       
in diabetes mellitus [Mirsky 1956]. 
 
Indoles and indoleacetate are beneficial products of protein        
fermentation, and tryptophan metabolism pathway products      
particularly [Russell 2013]. In one study, intraperitoneal       
administration of indole-3-propionic acid, indole-3-butyric     
acid, and indole-3-acetic acid were shown to be associated         
with hypogIycemia in normal and alloxandiabetic mice,       
while L-tryptophan and kynurenic acid had no effect        
[Silverstein 1966]. 
 
The interpretation we offer here is dependent on the         
individual’s microbiome function. If a given person’s       
microbiota mainly shows ability to convert tryptophan to        
beneficial indoles and indole-actetate molecules capable of       
reducing inflammation and glycemic effects of foods, then it         
may be of benefit to recommend tryptophan sources (in the          
form of food or supplement) to such people. On the other           
hand, if tryptophan is used by the microbiota to produce          
more of the pro-inflammatory triggers, then such action may         
not be suitable for mitigating glycemic response or        
inflammation in general. 
 
Tyrosine and fructose metabolizer scores group active       
microbes by functional characteristics. In our studies we        
have observed that active functional microbial groups reflect        
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the host’s habitual diet. Hence, “Low” tyrosine metabolizers        
may suggest a diet that is low on protein sources of tyrosine.            
We also hypothesize that the inverse relationship between        
the fructose metabolizers score and PPGR may be due to a           
diet that is low in fructose, or other carbohydrates that serve           
as metabolic precursors of fructose. It is not yet clear how a            
diet that is rich in fructose or deficient in tyrosine may           
influence glycemic response, and more studies are needed. 
 
Glutamine production pathways score, when “Low,” showed       
a direct relationship with higher PPGR. Microbial glutamine        
production has not been directly linked to glycemic response         
in humans. However, glutamine is considered an important        
nutrient for gut health and has been included in various          
supplements used by clinical healthcare practitioners to       
prevent or heal “leaky gut” [Kim 2017, Rao 2012]. More          
research is needed to understand the molecular mechanisms        
that may be responsible for higher glycemic response to         
food in individuals with low microbial glutamine production        
activity in the gut. 
 
The microbiome features revealed by our glycemic response        
model may influence PPGR directly or indirectly. Although        
it is challenging to delineate causal mechanisms, there may         
be functional patterns that connect the significant scores        
with gut health, intestinal barrier integrity, and       
inflammation. Inflammation and stress response may be       
implicated in elevation of blood glucose (either due to         
cortisol pathway or other mechanisms). Knowing which       
foods may elicit higher personal PPGR can offer valuable         
guidance in diet selection. However, to intervene on the root          
cause of glycemic response, specific mechanisms connecting       
nutrients to the gut microbiome and to inflammatory and         
glycemic response need to be taken into account. We seek to           
confirm and validate these mechanisms. An understanding       
of which microbiome features are significant will pave the         
path to precise personalization of food and supplement        
recommendations. 
 
Modeling methods and model evolution 
The multilevel mixed effects model presented first in the         
previous section was deliberately chosen to better       
understand the incremental effects of the significant features,        
especially the functional gut microbiome activity features.       
We are not aware of any prior literature that demonstrates          
the statistical significance of the microbiome in the context         
of a predictive model of PPGR. Prior studies [Zeevi 2015]          
using only ensemble methods such as gradient boosting        
machines represent the state of the art in accurate prediction          
of PPGR (which we also show in Figure 4E). These models           
suffer from difficulty of interpretation, including      

determination of which features significantly contribute to       
the predicted outcome. 
 
We are in the process of increasing the generalizability of          
our findings by collecting further data from       
underrepresented subpopulations such as pre-diabetics,     
people reporting poor overall health, and older participants.        
With the goal of continuous improvement, we will rebuild         
and revalidate our model based on this new expanded data.          
The current paper provides a first snapshot of the collected          
data, and we will use the additional data to consolidate the           
current model, as well as potentially surface new relevant         
predictors. Finally, we also plan on validating the model on          
an unseen cohort, and performing a blinded randomized        
controlled dietary intervention based on this predictive       
model to look for improvements in the glycemic response as          
well as alterations to the gut microbiota.  

Conclusions 
Most significantly, this paper makes the following       
contributions: 

● Demonstrates for the first time that      
metatranscriptomic activity of the gut microbiome      
contributes to individual variation in glycemic      
response among adults. 

● Suggests new microbial features that may help       
uncover molecular mechanisms of glycemic     
control. 

● Demonstrates the statistical significance of all      
features using a multilevel mixed-effects regression      
model where fixed effects represent measured      
properties and random effects account for further       
variation. We also present a gradient boosting       
machine for maximizing predictive accuracy. 

● Demonstrates that glycemic response is driven by       
the properties of an individual in addition to the         
food’s macronutrient content, measured with 104      
unique pre-designed meals within omnivore and      
vegetarian/gluten-free diet types and within a      
multi-ethnic population. 
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