Total cholesterol and risk of mortality in the oldest old

Summary

Background The impact of total serum cholesterol as a risk factor for cardiovascular disease decreases with age, which casts doubt on the necessity for cholesterol-lowering therapy in the elderly. We assessed the influence of total cholesterol concentrations on specific and all-cause mortality in people aged 85 years and over.

Methods In 724 participants (median age 89 years), total cholesterol concentrations were measured and mortality risks calculated over 10 years of follow-up. Three categories of total cholesterol concentrations were defined: <5·0 mmol/L, 5·0–6·4 mmol/L, and ≥6·5 mmol/L. In a subgroup of 137 participants, total cholesterol was measured again after 5 years of follow-up. Mortality risks for the three categories of total cholesterol concentrations were estimated with a Cox proportional-hazards model, adjusted for age, sex, and cardiovascular risk factors. The primary causes of death were coded according to the International Classification of Diseases (ICD-9).

Findings During 10 years of follow-up from Dec 1, 1986, to Oct 1, 1996, a total of 642 participants died. Each 1 mmol/L increase in total cholesterol corresponded to a 15% decrease in mortality (risk ratio 0·85 [95% CI 0·79–0·91]). This risk estimate was similar in the subgroup of participants who had stable cholesterol concentrations over a 5-year period. The main cause of death was cardiovascular disease with a similar mortality risk in the three total cholesterol categories. Mortality from cancer and infection was significantly lower among the participants in the highest total cholesterol category than in the other categories, which largely explained the lower all-cause mortality in this category.

Interpretation In people older than 85 years, high total cholesterol concentrations are associated with longevity owing to lower mortality from cancer and infection. The effects of cholesterol-lowering therapy have yet to be assessed.

Lancet 1997; 350: 1119–23

Introduction

The importance of hypercholesterolaemia as a risk factor for cardiovascular disease in middle-aged people suggests that cholesterol-lowering therapy should be used to prevent morbidity and mortality. Above age 70 years, the significance of hypercholesterolaemia as a cardiovascular risk factor is controversial. The results of observational studies are conflicting, and data from controlled clinical trials on the effect of cholesterol lowering in the elderly are rare. Even if mechanisms of cardiovascular disease are the same for middle-aged and older people, the greater comorbidity and poorer health status in the elderly—as well as the cumulative years of risk exposure—hamper the generalisation of epidemiological results from younger to older individuals. Whether or not hypercholesterolaemia in elderly people with cardiovascular disease should be treated is therefore contested.

The finding that low cholesterol concentrations may be associated with increased mortality risk from cancer, respiratory disease, and trauma,1 had also caused discussion. Some outcomes of clinical-intervention trials with cholesterol-lowering drugs suggest a similar increased mortality risk among the members of the actively treated group.2,3 To explore further the relation between cholesterol as a risk factor for cardiovascular disease in the elderly, we assessed the effects of total cholesterol concentrations on specific and all-cause mortality in the Leiden 85-plus study.

Methods

Leiden 85-plus study

On Dec 1, 1986, the community of Leiden in the Netherlands had 105 000 inhabitants, of whom 1258 (1·2%) were 85 years and older. Among these oldest old, we initiated a population-based prospective follow-up study to assess the association of HLA antigens with human lifespan.4,5 During the assessment, which lasted from Dec 1, 1986, to March 1, 1988, 221 participants died before they could be visited. A total of 1037 people were eligible for the study, of whom 977 (94%) provided informed consent and were enrolled. Blood samples were taken at their homes, according to predefined protocols under non-fasting conditions. After isolation of the leucocytes for HLA typing, which was the primary goal of the study, the remaining serum was available for laboratory measurements with a fully automated system (SMAC, Technicon, Tarrytown, NY, USA). Concentrations of total serum cholesterol were available for 724 (70%) of people. Data on HDL cholesterol and triglycerides were not gathered.

A medical history was taken by a physician during a home visit with special emphasis on cardiovascular disease, diabetes mellitus, and other chronic disorders. The method of history taking seemed to be closely consistent with the medical records of the general practitioner.6 Smoking habits were recorded by self-reports, and participants were classified as current smokers (including former smokers who had stopped <10 years ago) or
Table 1: Baseline characteristics of study population

<table>
<thead>
<tr>
<th>Total cholesterol concentration (mmol/L)</th>
<th>Number of participants</th>
<th>Mortality risk (adjusted for age and sex)</th>
</tr>
</thead>
<tbody>
<tr>
<td><5·0</td>
<td>203 (1·00)</td>
<td>1·00 (0·49–1·96)</td>
</tr>
<tr>
<td>5·0–6·4</td>
<td>350 (1·40)</td>
<td>0·97 (0·65–1·43)</td>
</tr>
<tr>
<td>>6·5</td>
<td>171 (2·40)</td>
<td>0·92 (0·62–1·37)</td>
</tr>
</tbody>
</table>

Data on hypertension, smoking, and history of myocardial infarction and previous cerebrovascular accident.

Table 2: 10-year mortality risks

Survival time for participants was defined as the period from the date of the home visit to the date of one of the following events: death from a specific cause, death from any cause, and Oct 1, 1996. Mortality risks and 95% CIs for the three categories of total cholesterol concentrations were estimated with a Cox proportional-hazards model. According to the guidelines of the Dutch Cholesterol Consensus, we defined a low total cholesterol concentration as below 5·0 mmol/L; a moderately high total cholesterol concentration as 5·0–6·4 mmol/L; and a high total cholesterol concentration as equal to or above 6·5 mmol/L.

Results

724 participants aged 85 years and older for whom total cholesterol concentrations were available are included in this analysis. Their baseline characteristics (table 1) did not differ from those of participants whose total cholesterol concentrations were unavailable (data not shown). The 724 participants are from a cohort of 1037 people in an impact study of the HLA system and survival (Leiden 85-plus study). Compared with the 1037 people eligible for the study, the cumulative 10-year mortality risk for the 724 participants was 0·97 (95% CI 0·87–1·07). The mean total cholesterol concentration was 5·2 (SD 1·1) mmol/L in men and 5·9 (1·3) mmol/L in women (p<0·001); it was 5·8 (1·3) mmol/L in participants aged under 90 years and 5·5 (1·2) mmol/L in those aged 90 years or older (p<0·0005).

During the 10-year follow-up from Dec 1, 1986, to Oct...
1, 1996, 642 participants died. The all-cause mortality risks for the three categories of total cholesterol concentrations are shown in table 2. Adjustment for age, sex, and cardiovascular risk factors and disease did not substantially influence these risk estimates. Each 1 mmol/L increase of total cholesterol corresponded to a 15% decrease in mortality (risk ratio 0·85 [95% CI 0·79–0·91]) after adjustment for differences in age and sex. When age was entered into the model as a quadratic term to adjust for residual confounding—because cholesterol decreases with age—the mortality-risk estimates remained similar. The mortality-risk estimate was 0·75 (0·65–0·86) for men and 0·85 (0·79–0·92) for women.

In an attempt to adjust the mortality risk for underlying disease—known or unknown—we excluded the events during year 1 of follow-up (n=119), thereby excluding participants with a concentration of total serum cholesterol as a marker of imminent death. In the remaining 605 participants, the mortality risk associated with a 1 mmol/L increase in total serum cholesterol was 0·85 (0·79–0·92). When serum albumin concentrations were entered into the model as a biochemical marker of health, the mortality risk associated with total serum cholesterol was 0·91 (0·84–0·97). In this final model, the risk estimate for a 1 g/L decrease in serum albumin was 0·93 (0·90–0·96); for an increase of 1 year of age it was 1·07 (1·04–1·10); and for men compared with women, 1·01 (0·83–1·25).

In 1991, after 5 years of follow-up, 137 participants of the original cohort were re-examined. On average, the total cholesterol concentration had decreased by 0·4 (SD 1·0) mmol/L (p<0·0001). Mortality-risk estimates based on the second measurement of cholesterol for these 137 participants were almost the same as those for the whole group (table 3). To adjust for differences in the total cholesterol concentrations over time, a multivariate analysis was done, including both the average of the two cholesterol measurements and the difference between the two cholesterol measurements. Mortality was

<table>
<thead>
<tr>
<th>Cause of death</th>
<th>ICD-9 code</th>
<th>Number (%) with total cholesterol concentration (mmol/L)*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cardiovascular disorders</td>
<td></td>
<td></td>
</tr>
<tr>
<td>All</td>
<td>390–459</td>
<td>90 (52%) 174 (43%) 66 (34%)</td>
</tr>
<tr>
<td>Ischaemic heart disease</td>
<td>410–414</td>
<td>22 (16%) 33 (11%) 13 (7%)</td>
</tr>
<tr>
<td>Cerebrovascular disease</td>
<td>430–438</td>
<td>26 (19%) 45 (15%) 24 (13%)</td>
</tr>
<tr>
<td>Malignant neoplasms</td>
<td>140–239</td>
<td>20 (14%) 45 (15%) 40 (21%)</td>
</tr>
<tr>
<td>Respiratory diseases</td>
<td>460–519</td>
<td>10 (7%) 39 (13%) 28 (12%)</td>
</tr>
<tr>
<td>All infections</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Septicaemia</td>
<td>038-038-9</td>
<td>8 (5%) 41 (13%) 20 (10%)</td>
</tr>
<tr>
<td>Tuberculosis</td>
<td>010-018-9</td>
<td>0 (1%) 1 (3%) 0 (0%)</td>
</tr>
<tr>
<td>Respiratory-tract infections</td>
<td>460-466-1, 480-487-8, 510-510-9, 513-513-1</td>
<td>5 (3%) 27 (9%) 17 (10%)</td>
</tr>
<tr>
<td>Infections of kidney and urinary tract</td>
<td>590-590-9, 599-0</td>
<td>2 (1%) 9 (3%) 2 (1%)</td>
</tr>
<tr>
<td>Senility without mention of psychosis</td>
<td>797</td>
<td>8 (5%) 27 (9%) 21 (12%)</td>
</tr>
<tr>
<td>External causes</td>
<td>880-889</td>
<td>4 (3%) 12 (4%) 7 (4%)</td>
</tr>
<tr>
<td>All causes</td>
<td>000-999</td>
<td>139 (100%) 311 (100%) 192 (100%)</td>
</tr>
</tbody>
</table>

Percentages may add up to >100 since some causes of death are classified twice. *Not known for 3 participants.

Table 4: Comparison of primary causes of death according to total cholesterol concentration at baseline

Figure 1: Cumulative mortality for various causes of death

Patients who died from other causes censored at times of death, assuming that causes of death were independent.
associated with the average value of the total cholesterol concentration (risk ratio 0·71 [0·59–0·87]), but not with the change in cholesterol concentrations over time (1·07 [0·89–1·29]).

To explore further the effects of underlying disease, which cause both low total cholesterol and mortality, we restricted the analysis to participants who had similar cholesterol concentrations over time. Compared with their total cholesterol concentration at baseline, 86 (63%) of the 137 participants remained in the same total cholesterol category, 37 (27%) participants changed to a lower category, and 14 (10%) changed to a higher category. Among the 86 participants who remained stable in their total cholesterol category, the mortality estimates did not substantially differ from those for the whole group (table 3).

For 639 (99·5%) of the 642 patients who died, the cause of death could be determined (table 4). In all three cholesterol categories the main cause of death was cardiovascular disease. The second and third leading causes of death were cancer and infection. External causes contributed little to mortality in patients older than 85 years. Suicide was not reported. 46 (7%) participants died from senility.

To adjust for the different mortality rates in the three total cholesterol categories, we calculated separately the cumulative mortality risk of cardiovascular disease, cancer, infection, and all causes (figure 1). Mortality risk from cardiovascular disease was divided equally over the three categories of total cholesterol (p log-rank=0·30). The mortality risk from cancer and infection was significantly lower among the participants in the high-cholesterol category, which largely explained the lower all-cause mortality in this category. Median survival of the participants was 2·5 years in the lowest cholesterol category, 3·4 years in the middle category, and 4·3 years in the highest category; this trend was significant (p log-rank <0·0001).

Total cholesterol concentrations in the elderly men from Leiden were stable with those of a comparable birth cohort from Zutphen at age 60 years (figure 2). The mean total cholesterol concentrations in the male population of Leiden was 5·2 (SD 1·1) mmol/L and in that of Zutphen, 6·1 (1·2) mmol/L.

Discussion

The results of our study show that for both men and women of 85 years and older, high total serum cholesterol concentrations are inversely correlated with mortality—ie, high cholesterol is associated with increased survival. Compared with participants who had low total cholesterol concentrations, those with moderately high and high concentrations have a lower mortality risk of 22% and 38%, respectively.

The total cholesterol concentration of the participants aged 85 years and over might not reflect their life-time cholesterol concentration, and thus not effectively stratify their risk. This might be true especially for elderly people with comorbidity, causing increased mortality and low total serum cholesterol concentrations when close to death. This factor may explain, hypothetically, the inverse association between cholesterol and mortality in the oldest old. This association was confirmed, however, in a subgroup with equal cholesterol concentrations over a follow-up period of 5 years; such a distorting mechanism is thus unlikely.

We came to the same conclusion when we analysed the data after excluding the events that occurred during year 1 of follow-up; the patients with a decrease in total cholesterol just before death were not included. The data were also analysed with the use of the plasma concentrations of albumin as a biochemical marker of health. The inverse association between total cholesterol and mortality was confirmed, although the association was weaker. However, whether the latter is the most appropriate analysis to correct for underlying disease—known or unknown—is questionable. If, for instance, malnutrition or hepatic disease is causally related to increased mortality (eg, infection) by means of low concentrations of plasma total cholesterol, adjustment for albumin might weaken the association. Taken together, the results probably cannot be explained by disease, known or unknown, that causes both low total cholesterol concentrations and increased all-cause mortality. Among these oldest old, cardiovascular disease was, as in middle-aged and younger elderly people, the most important cause of death, albeit independent of total cholesterol concentration. Total cholesterol concentrations in the elderly men from Leiden were lower than in a comparable birth cohort from Zutphen at age 60 years, which suggests that high total cholesterol concentrations in middle age were associated with mortality in our birth cohort. As a result of selective survival, hypercholesterolaemic individuals who remain in the cohort may be resistant to the effects of high cholesterol, which corroborates the findings of other studies. Another possible explanation for the observation that cholesterol is not a risk factor for cardiovascular disease in the very old is that changes in the vessel wall may lower susceptibility to cholesterol.

We found in this study an inverse association between serum total cholesterol concentration and 10-year cancer mortality. Reports suggest that cancer rates are higher among people with low total serum cholesterol concentrations simply because cardiovascular-disease rates are low. However, in our cohort, death from cardiovascular disease was independent of the total serum cholesterol concentration.

Many epidemiological studies have examined the relation between low concentrations of total serum cholesterol and cancer risk, but their results are inconsistent. In the Honolulu and Framingham studies, there was an inverse association, which is unlikely to be explained by a preclinical cancer effect because the first years of follow-up were excluded from analysis. This year, a study suggested that the decline in serum total cholesterol occurred only in the final 4 years.
before cancer death.14 In the Paris Prospective Study I,22 a
decline in total cholesterol over time was associated with a
higher risk of cancer mortality; but there was also an
association between low baseline total cholesterol
concentration and cancer mortality.

In our study, death from infectious disease was scored as
a primary cause of death, and no other terminal
diseases entered into this group. The association between
infectious-disease mortality and a low total cholesterol
concentration is surprising. The inverse association
between total cholesterol and the risk of nosocomial
infection in surgical patients supports our findings.23,24 In
an experimental study, Netea and colleagues22 showed that
mice deficient in receptors for low-density lipoprotein
with endogenous hypercholesterolaemia, were protected
against infections with gram-negative micro-organisms.
Rejection of organ transplants is clearly less likely when
patients are treated with cholesterol-lowering drugs,25,26
which suggests that such drugs may have an
immunomodulatory effect.

Our study shows that a high total serum cholesterol
concentration is not a risk factor for cardiovascular
disease in people aged 85 years and over—on the
contrary, it is associated with longevity. On the evidence
of our data, cholesterol-lowering therapy in the elderly is
questionable. However, stroke is still one of the most
prevalent and disabling disorders in old people.
Physicians must remember that although total cholesterol
is not a risk factor for cerebrovascular disease,23 two meta-
analyses have shown that treatment with inhibitors of
hydroxymethylglutaryl-CoA reductase reduces stroke risk by
30%.23,24 A conclusion about the balance between the
benefit and the risk of cholesterol-lowering therapy in the
oldest has yet to be reached.

Contributors
A W J Weverling-Rijnsburger reviewed the literature, collated
data on the follow-up, carried out data analysis, interpreted results, and wrote
the manuscript. G J Blauw formulated the hypothesis for the study and
helped interpret results. A M Lagay was primarily responsible for the
population survey, collected cross-sectional data, and formulated the
hypothesis for the study. L J Knoop and A E Meinders supervised the
overall conduct of the Leiden 85-plus study, and advised on the
manuscript. R G J Westendorp formulated the hypothesis for the study, and
assisted with the Leiden 85-plus database; and Gerrit J Weverling
reviewed the literature, collated data on the
participants, and supervised the study. D L Knook and A E Meinders supervised
for death-certificate information; Edmond J Remarque for technical
assistance with the Leiden 85-plus database; and Edith J M Feskens (National Institute of Public Health and the
Environment, Bilthoven), for providing the cholesterol data of the
participants.

We thank Edith J M Feskens (National Institute of Public Health and the
Environment, Bilthoven), for providing the cholesterol data of the
participants.

Acknowledgments
We thank Edith J M Feskens (National Institute of Public Health and the
Environment, Bilthoven), for providing the cholesterol data of the
participants.

References
low blood cholesterol: mortality associations. Circulation 1992; 86:
1046–60.
2 Muldoon MF, Manuck SB, Matthews KA. Lowering cholesterol
concentrations and mortality: a quantitative review of primary
3 Sacks FM, Pfeiffer MA, Moye LA, et al. The effect of pravastatin
on coronary events after myocardial infarction in patients with average
4 Lagay AM, Asperen van JA, Hijmans W. The prevalence of morbidity
in the oldest old, age 85 and over: a population-based survey in
5 Izaks GJ, Houwelingen Van HC, Schreuder GMT, Ligthart GJ. The
association between human leucocyte antigens (HLA) and mortality in
community residents aged 85 and over. J Am Geriatr Soc 1997; 45:
56–60.
6 Lagay AM, Mei van der JC, Hijmans W. Validation of medical
history taking as part of a population based survey in subjects aged 85 and
7 WHO. International classification of diseases: manual of the
technical standard classification of diseases, injuries, and causes of
8 Kromhout D, Bosscheeier IE, Driver M, Lezenne Coulandier de C. Serum
cholesterol and 25-year incidence of and mortality from
9 Vries de CJ, Feskens EJM, Lezenne Coulandier de C, Kromhout D. Repeated
measurements of serum cholesterol and blood pressure in relation to
long-term incidence of myocardial infarction. Cardiology 1993; 82:
89–99.
10 Oldham PD. A note on the analysis of repeated measurements of the
11 Corti MC, Guralnik JM, Salive ME, et al. Clarifying the direct relation
between total cholesterol levels and death from coronary heart disease
12 Kromholz HM, Seeman TE, Merrill SS, et al. Lack of association
between cholesterol and coronary heart disease mortality and morbidity and all-cause mortality in persons older than 70 years.
13 Anderson KM, Castelli WP, Levy D. Cholesterol and mortality: 30
years of follow-up from the Framingham study. JAMA 1987; 257:
2176–80.
14 Schinkin A, Hoover NR, Taylor PR, et al. Site-specific analysis of
total serum cholesterol and incident cancer in the National Health and
Nutrition Examination Survey I. Epidemiologic Follow-up Study. Cancer
15 Sharp SJ, Pocock SJ. Time trends in serum cholesterol before cancer
16 Zureik M, Courbon D, Ducimetiere P. Decline in serum total
cholesterol and the risk of death from cancer. Epidemiology 1997; 8:
137–43.
17 Delgado-Rodriguez M, Medina-Caudros M, Martinez-Gallego G,
Sillero-Arenas M. Total cholesterol, HDL-cholesterol, and the risk of
nosocomial infection: a prospective study in surgical patients. Infect
18 Netea MG, Demacker PNM, Kullberg BJ, et al. Low-density
lipoprotein receptor-deficient mice are protected against lethal
endotoxemia and severe gram-negative infections. J Clin Invest 1996;
97: 1366–72.
pravastatin on acute rejection after kidney transplantation: a pilot study.
621–27.
21 Muldoon MF, Manuck SB, Matthews KA. Lowering cholesterol
concentrations and mortality: a quantitative review of primary
22 Netea MG, Demacker PNM, Kullberg BJ, et al. Low-density
lipoprotein receptor-deficient mice are protected against lethal
endotoxemia and severe gram-negative infections. J Clin Invest 1996;
97: 1366–72.
pravastatin on acute rejection after kidney transplantation: a pilot study.
621–27.
25 Prospective studies collaboration. Cholesterol, diastolic blood
pressure, and stroke: 13 000 strokes in 450 000 people in 45
26 Blauw GJ, Lagay AM, Smelt AHM, Westendorp RJG. Stroke, statins,
and cholesterol: a meta-analysis of randomized placebo controlled
blind trials with HM-G-Co-A-reductase inhibitors. Stroke 1997; 28:
946–50.
27 Crouse III JR, Byington RP, Hoern HM, Furberg CD. Reductase
inhibitor monotherapy and stroke prevention. Arch Intern Med 1997;