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ABSTRACT Childhood obesity is a growing problem worldwide. Recent research

suggests that the gut microbiota may play an important and potentially causal role

in the development of obesity and may be one mechanism that explains the trans-

generational transmission of obesity risk. Here we examine the early-life gut microbiota

at days 4, 10, 30, 120, 365, and 730 and the association with body mass index (BMI)

z-scores at age 12 in a Norwegian prospective cohort (n� 165), and evaluate how these

BMI-associated taxa relate to maternal overweight/obesity (Ow/Ob) and excessive gesta-

tional weight gain (GWG). We performed 16S rRNA gene sequencing on the gut micro-

biota samples. Taxonomic phylogeny at days 10 and 730 was significantly associated

with childhood BMI, and the gut microbiota taxa at two years of age explained over

50% of the variation in childhood BMI in this cohort. The subset of the early-life taxa

within the gut microbiota that best predicted later childhood BMI showed substantial

overlap with the maternal taxa most strongly associated with maternal Ow/Ob and ex-

cessive GWG. Our results show an association between the infant gut microbiota and

later BMI, and they offer preliminary evidence that the infant gut microbiota, particularly

at 2 years of age, may have potential to help identify children at risk for obesity.

IMPORTANCE Understanding the role of the early-life gut microbiota in obesity is

important because there may be opportunities for preventive strategies. We exam-

ined the relationships between infant gut microbiota at six times during the first

two years of life and BMI at age 12 in a birth cohort of 165 children and their moth-

ers. We found that the gut microbiota from early life to two years shows an increas-

ingly strong association with childhood BMI. This study provides preliminary evi-

dence that the gut microbiome at 2 years of age may offer useful information to

help to identify youth who are at risk for obesity, which could facilitate more-

targeted early prevention efforts.

KEYWORDS children, infants, microbiota, obesity

The prevalence of childhood obesity has been increasing in most nations across the

globe in recent decades and is considered an epidemic (1, 2). Although we know

that human genetics and aspects of the “Western lifestyle” including poor diet and lack
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of exercise contribute to this epidemic, our understanding of the physiological etiology

of obesity and effective ways to curb obesity in children is incomplete (1).

In recent decades, the idea that the gut microbiota may play an important and

potentially causal role in obesity has gained traction. Differences in gut microbiota have

been associated with overweight/obesity in both adults and children, and there is

growing evidence of possible causal mechanisms (3–5). The role of early-life gut

microbiota in the development of obesity is of particular interest because of the

potential application to prevention efforts. Taxonomic differences have been noted at

different time points during the first 2 years of life with measures of weight or adiposity

at various times during the first years of life through early childhood (6–9). Our prior

work in this cohort also showed that early gut microbiota was associated with infant

growth velocity, a risk factor for later obesity (10). Exposures that alter the early infant

gut microbiota, such as antibiotic use (11, 12) and delivery via cesarean section (13),

have also been associated with childhood obesity risk. Furthermore, research in animal

models has provided compelling evidence that perturbations in the early-life gut

microbiota has long-term metabolic consequences (14).

The early-life gut microbiota is highly dynamic and shaped by many factors, such as

maternal gut microbiota, delivery mode, breastfeeding, and antibiotics, making this a

particularly challenging time period to study (15–17). Many of the studies in this area

have had small sample sizes, only one or two time periods of gut microbiota data

collection, or only early measures of child weight, which correlates with later obesity

but not as strongly as measures later in childhood (18). Some of these studies have also

focused exclusively on subsets of children with similar early-life exposures (e.g., full

term, vaginally born, unexposed to antibiotics, etc.), but detailed information about

early-life exposures is not always known by clinicians. Thus, it is also important to gain

a better understanding of the longitudinal association between gut microbiota and

obesity and whether the association is evident across diverse early-life exposures. In

this study, we examine the gut microbiota at 6 time points over the first 2 years of life

and the relationship with age- and sex-specific body mass index (BMI) z-scores at age

12 in a Norwegian birth cohort (NoMIC), both overall and when accounting for diverse

early-life exposures, including differences in gestational age, antibiotic use, delivery

mode at birth, twin status, and breastfeeding. We also examine the roles of maternal

overweight/obesity (Ow/Ob), excessive gestational weight gain (GWG), and maternal

gut microbiota in this association. This is an important area of research because an early

marker of obesity risk could allow for more-targeted prevention efforts in children or

pregnant women (19).

RESULTS

Characterization of the infants and their gut microbiota during the first 2 years

of life. Our primary analysis includes gut microbiota data from 165 infants. At 12 years

of age, 20% (n � 33) of the children were overweight or obese; the median (IQR) age-

and sex-specific BMI z-score at this age was 0.1 (�0.5 to 0.7) (Table 1). Mothers of

Ow/Ob children tended to have less education and higher prepregnancy BMI than

mothers of non-Ow/Ob children; they also had higher rates of smoking during preg-

nancy and shorter duration of breastfeeding (Table 1).

Figure S1 in the supplemental material shows the gut microbiota taxonomic com-

position of the infants at six time points during the first 2 years of life (days 4, 10, 30,

120, 365, and 730), as well as that of their mothers at the time of delivery, by the child’s

Ow/Ob status at age 12. The composition changed significantly over time, at both the

phylum and genus levels. The infant samples progressed toward a more adult-like

community with age, as seen by comparing the infants to the maternal samples in the

taxonomy plots (Fig. S1), as well as in the principal coordinate analysis plots of UniFrac

distance (Fig. S2). This progression of infant gut microbiota composition toward an

adult-like community is typical and usually occurs around the age of 2 to 3 years

(20, 21).

Stanislawski et al. ®

September/October 2018 Volume 9 Issue 5 e01751-18 mbio.asm.org 2

 o
n
 O

c
to

b
e
r 3

1
, 2

0
1
8
 b

y
 g

u
e
s
t

h
ttp

://m
b
io

.a
s
m

.o
rg

/
D

o
w

n
lo

a
d
e
d
 fro

m
 

https://mbio.asm.org
http://mbio.asm.org/


Infant gut microbiota, particularly at 2 years of age, is predictive of childhood

BMI z-score. The overall infant gut microbiota taxonomic phylogeny (unweighted

UniFrac) at days 10 and 730 was significantly associated with sex- and age-specific BMI

z-scores at age 12 (Fig. 1). Since it is possible a specific subset of the taxa could be

predictive of childhood BMI even though the overall composition is not significantly

associated, we evaluated whether gut microbiota taxa at each sampling time during

the first 2 years of life predicted later BMI using random forests (22). As can be seen in

Fig. 2, the gut microbiota of infants during the first 4 months explained a significant

portion of the variation in BMI z-score (R2 values range from 14.6% to 15.1%). This

association strengthened with age, and more than half (53.0%) of the variability in BMI

z-scores at 12 years of age was explained by the gut microbiota composition at 2 years

TABLE 1 Characteristics and early-life exposure of infants in the NoMIC cohorta

Characteristic

Median (IQR) or n (%)

P valueTotal (n � 165) Non-Ow/Ob � 0 (n � 132) Ow/Ob (n � 33)

Parental characteristics
Maternal age (yr) 30 (27–32) 30 (28–32) 29 (26–33) 0.45
Ethnic Norwegian 144 (87.3%) 116 (87.9%) 28 (84.8%) 0.26
Missing 5 (3.0%) 3 (2.3%) 2 (6.1%)

Maternal education
�12 yr education 15 (9.1%) 10 (7.6%) 5 (15.2%) 0.002
12 yr education 29 (17.6%) 20 (15.2%) 9 (27.3%)
�12 yr education 118 (71.5%) 99 (75.0%) 19 (57.6%)
Missing 3 (1.8%) 3 (2.3%) 0 (0.0%)

Maternal prepregnancy BMI 24.5 (21.4–27.1) 23.1 (21.0–26.1) 26.3 (24.2–30.1) �0.001
Maternal prepregnancy Ow/Ob 73 (44.2%) 49 (37.1%) 24 (72.7%) �0.001
Paternal BMI 26.1 (23.7–28.2) 25.4 (23.7–27.7) 27.8 (25.9–29.2) 0.13

Exposures during pregnancy
Maternal smoking during pregnancy 20 (12.1%) 12 (9.1%) 8 (24.2%) 0.02
Diabetes
Type 1 1 (0.6%) 1 (0.8%) 0 (0.0%) 0.64
Gestational diabetes 1 (0.6%) 1 (0.8%) 0 (0.0%)

High BP 9 (5.5%) 7 (5.3%) 2 (6.1%) 1.00
Parity
No prior pregnancies 75 (45.5%) 61 (46.2%) 14 (42.4%) 0.17
1 prior child 54 (32.7%) 46 (34.8%) 8 (24.2%)
�1 prior child 36 (21.8%) 25 (18.9%) 11 (33.3%)

Infant and birth
Female sex 75 (45.5%) 59 (44.7%) 16 (48.5%) 0.70
Twins 21 (12.7%) 20 (15.2%) 1 (3.0%) 0.08
Gestational age at birth (wk) 39.0 (36.0–40.0) 39.0 (36.5–40.0) 39.0 (36.0–40.0) 0.78
C-section delivery 51 (30.9%) 38 (28.8%) 13 (39.4%) 0.24
Birth weight (g) 3,290 (2,560–3,750) 3,260 (2,540–3,740) 3,370 (2,878–3,990) 0.31

Infant feeding
Length of any breastfeeding (mo) 10 (5–13) 11 (5.5–14) 7 (3–13) 0.03
Length of exclusive breastfeeding (mo) 4 (2–6) 5 (2–6) 2 (0–5) 0.01
Child age when introduced to porridge (wk) 19 (16–22.5) 20 (16–23) 18 (16–20) 0.24
Child age when introduced to solids (wk) 20 (16–26) 22 (17.5–26) 18 (16–26) 0.12

Antibiotic exposures
Maternal antibiotics during pregnancy 56 (33.9%) 46 (34.8%) 10 (30.3%) 0.83
Missing 5 (3.0%) 3 (2.3%) 2 (6.1%)

Antibiotics given to newborn 24 (14.5%) 16 (12.1%) 8 (24.2%) 0.09
Missing 2 (1.2%) 1 (0.8%) 1 (3.0%)

Child antibiotics before 10 (6.1%) 6 (4.5%) 4 (12.1%) 0.11
4 days
10 days 13 (7.9%) 9 (6.8%) 4 (12.1%) 0.30
30 days 18 (10.9%) 13 (9.8%) 5 (15.2%) 0.38
120 days 25 (15.2%) 20 (15.2%) 5 (15.2%) 1.00
1 year 68 (41.2%) 52 (39.4%) 16 (48.5%) 0.34
2 years 93 (56.4%) 74 (56.1%) 19 (57.6%) 0.88

Childhood BMI
BMI-for-age Z 0.1 (–0.5 to 0.7) –0.1 (–0.6 to 0.4) 1.7 (1.4–1.9) �0.001
BMI-for-age percentile 54.3 (30.2–77.2) 47.6 (26.9–64.4) 95.1 (92.0–97.1) �0.001

aChildren are grouped by overweight/obesity (Ow/Ob) status at age 12, as defined by age- and sex-specific BMI percentiles of �85th percentile.

Gut Microbiota in the First 2 Years and BMI at Age 12 ®

September/October 2018 Volume 9 Issue 5 e01751-18 mbio.asm.org 3

 o
n
 O

c
to

b
e
r 3

1
, 2

0
1
8
 b

y
 g

u
e
s
t

h
ttp

://m
b
io

.a
s
m

.o
rg

/
D

o
w

n
lo

a
d
e
d
 fro

m
 

https://mbio.asm.org
http://mbio.asm.org/


of age (Fig. 2). This is substantially more than other predictors of child BMI; for example,

taken together child BMI predictors such as delivery mode, exclusive breastfeeding

duration, antibiotic exposure, twin status, gestational age at birth, and maternal factors

(including prepregnancy BMI, smoking during pregnancy, and education) explained

15.2% of the variation in child BMI z-score. Interestingly, the confounding variables of

delivery mode, exclusive breastfeeding duration, antibiotic exposure, twin status, and

gestational age included in the random forests were not among the most important

predictors of later BMI (see Fig. S3 for a conceptual model and description of our choice

of confounding variables); we estimated R2 values of the random forests both with and

without these confounding factors (Fig. 2), and the values were comparable.

The gut microbiota taxa and alpha diversity measures that were identified as most

strongly predictive of later childhood BMI are shown in Fig. 3. The predictors in random

forests can have complex interrelationships with each other and with the outcome,

which makes them appropriate for gut microbiota data but challenging to interpret

(23). Thus, we used adjusted linear regressions to aid in interpretation and specifically

to evaluate whether any of these predictors showed a linear relationship with BMI (see

Fig. S3 for conceptual model; see Table S1 for full regression results). Because the

assumptions underlying random forests and linear regressions are very different, we

would not expect important features to necessarily be significant in regressions;

however, many of these predictors did show linear relationships with BMI.

Early-life BMI z-scores do not predict later childhood overweight/obesity. BMI

z-scores showed considerable variation during the first 2 years of life (Fig. 4). Non-

Ow/Ob children showed no significant change in BMI z-scores between early childhood

FIG 1 Evaluation of the association between the gut microbiota taxonomic composition at 6 time points
in early life with BMI z-score at age 12. This plot shows the estimated P values from unadjusted (circles)
and adjusted (squares) Microbiome Regression-Based Kernel Association Tests of the unweighted (coral)
and weighted (blue) UniFrac distance matrices and BMI z-scores at age 12. These UniFrac measures
capture qualitative and quantitative differences in phylogeny, respectively. Dashed lines show P � 0.05
(black) and P � 0.1 (gray). Adjusted models controlled for breastfeeding, delivery mode, antibiotic
exposures, gestational age at birth, and twin status.
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and age 12 (� � 0.01; 95% CI: �0.01, 0.02; P value � 0.42), while Ow/Ob children

showed an increase in BMI z-score (� � 0.13; 95% CI: 0.1, 0.15; P value � 0.001). BMI

z-scores at age 2 years did not differ significantly by Ow/Ob status at age 12 (P

value � 0.32). Among children who were classified as lean at age 12, 11.3% had a BMI

z-score of �85th percentile (the cutoff used to define Ow/Ob) (24) at the age of 2,

whereas only 4.2% met this cutoff among those who would become Ow/Ob. Thus, the

overweight phenotype was largely absent at 2 years for the children who became

Ow/Ob by age 12.

Maternal gut microbiota taxa associated with maternal Ow/Ob and excessive

GWG show substantial overlap at the species level with BMI-associated taxa in the

infant. In prior work, we examined the association of maternal Ow/Ob and excessive

GWG with maternal gut microbiota at the time of delivery in this cohort (25). We found

that maternal Ow/Ob was associated with alpha diversity and taxonomic differences in

composition, while excessive GWG was associated only with taxonomic differences. If

the associations between maternal Ow/Ob or excessive GWG and child obesity are

mediated by the gut microbiota, we might expect to see some overlap in the maternal

taxa associated with these conditions and the infant taxa associated with childhood

BMI. Figure 5 shows the overlap in the taxa associated with these maternal character-

istics and those predictive of childhood BMI, at both the operational taxonomic unit

(OTU) (Fig. 5a) and species (Fig. 5b) level; 1/12 (8%) of the maternal OTUs most

associated with maternal Ow/Ob was also predictive of childhood BMI in the infant gut

microbiota, while 3/10 (30%) of those associated with excessive GWG were predictive

of BMI in the infant gut. When these taxa were summarized at the species level, there

was even more overlap (Fig. 5b); 6/10 (60%) of the species most associated with

maternal Ow/Ob and 5/8 (63%) of those associated with excessive GWG were predictive

of BMI in the infant gut. Additionally, we highlighted which of the infant taxa associated

with child BMI in Fig. 3 also associated with these maternal characteristics in maternal

taxa at the time of delivery.

BMI-associated infant gut microbiota and the association with maternal char-

acteristics of prepregnancy Ow/Ob and excessive GWG.We assessed the association

between both maternal prepregnancy Ow/Ob and excessive GWG with the groups of

FIG 2 Amount of variation in BMI z-score at age 12 explained by the infant gut microbiota at each sampling time. This plot
shows the estimated R2 values with 95% confidence intervals from the repeated cross-validation of the random forests to
predict childhood BMI z-scores based on infant gut microbiota characteristics at each sampling time, both unadjusted and
adjusted for confounding factors (breastfeeding, delivery mode, antibiotic exposures, gestational age at birth, and twin status).
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FIG 3 The infant gut microbiota taxa and alpha diversity measures at each sampling time that were most
highly predictive of BMI z-score at age 12. Infant gut microbiota taxa and diversity measures (OTUs listed with
OTU, phylum, and most specific level of known taxonomic classification) over the first 2 years of life that were
selected as most predictive of childhood BMI z-score in random forests at six points (grouped vertically). We
used linear regressions in order to assess the direction of association between these features at each sampling
time with BMI z-score at age 12, controlling for confounding factors (breastfeeding, delivery mode, antibiotic
exposures, gestational age at birth, and twin status). While a feature may have been selected as predictive of
BMI only at a certain sampling time, we plotted the linear associations at all times (horizontal axis) in order to
assess the temporal consistency of the association. Since the assumptions underlying random forests and linear
regressions are very different, we would not expect important features to necessarily be significant in regressions.
The colors represent the regression coefficients for each feature: red indicates a positive relationship between the
feature and childhood BMI, e.g., higher abundance corresponds with higher BMI; green indicates negative
relationships; gray indicates that the regression model failed to converge (NA). The column labeled “maternal taxa”
shows whether these gut microbiota species or diversity measures were also associated with maternal overweight/
obesity (Ow/Ob), excessive gestational weight gain (GWG), or both, in the maternal gut microbiota at the time of
delivery; Fig. 5 provides more detail and Fig. S4 shows the association between these BMI-associated infant taxa and
maternal characteristics.
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infant gut microbiota taxa selected as most predictive of childhood BMI (i.e., those

shown in Fig. 3) using permutational ANOVA (Fig. S4). Maternal Ow/Ob was associated

with the qualitative differences in the selected infant gut microbiota taxa at day 30 (P

value � 0.005 for unweighted UniFrac); excessive GWG was associated with quantita-

tive differences at day 730 (P value � 0.019 for weighted UniFrac).

DISCUSSION

In this study, we identified associations between infant gut microbiota composition

at six time points during the first 2 years of life and the development of later childhood

FIG 4 Spaghetti plots of BMI z-scores over time by Ow/Ob status at age 12. The regression lines (denoted by
thicker lines) show that BMI z-scores were fairly constant between ages 2 and 12 for children who were not Ow/Ob
at age 12, but there was an increase in BMI z-scores during this time for children who became Ow/Ob. At age 2,
there was no significant difference between BMI z-scores of children who later became Ow/Ob and those who
did not.

FIG 5 Venn diagrams showing the overlap between gut microbiota (a) OTUs and (b) species associated with maternal overweight/obesity (Ow/Ob) and
excessive gestational weight gain (GWG) in the maternal taxa at the time of delivery and those predictive of childhood BMI in the infant gut microbiota taxa
during the first 2 years of life. The OTUs are listed with OTU, phylum, and most specific level of known taxonomic classification; “species” are listed as phylum
and most specific level of known taxonomic classification. The numbers in parentheses show at which time points in the infant these taxa were predictive of
childhood BMI. Due to the large number of taxa associated with child BMI (green circle), these are not all listed by name but are shown in Fig. 3.
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obesity. We found that the gut microbiota during the first 2 years of life, particularly at

2 years of age, was strongly associated with later childhood BMI. Interestingly, BMI

z-scores at age two were not significantly higher in children who later became Ow/Ob,

so development of the gut microbiota composition that predicted later BMI preceded

any measurable excess weight in the children. In prior work in this cohort, we also

observed that early gut microbiota was associated with infant growth rates (10) and

that maternal Ow/Ob and excessive GWG were associated with compositional differ-

ences in maternal gut microbiota at the time of delivery, although these maternal

characteristics were not associated with an overall characteristic taxonomic signature in

the infant gut microbiota during the first 2 years of life (25). Here we show that the

subset of the infant gut microbiota taxa that are associated with later childhood BMI

were also associated with maternal Ow/Ob and excessive GWG. Furthermore, the taxa

in the maternal gut microbiota that were most associated with these characteristics

showed substantial overlap with the infant taxa most related to childhood BMI.

Our results showed that the gut microbiota at age two, when most of the children

who later became Ow/Ob did not yet have high BMI z-scores, was highly predictive of

BMI at age 12. One avenue for the prevention of obesity would be through early

identification of individuals at high risk for development of obesity, and our findings

suggest that fecal microbiota during early childhood may have potential as part of an

obesity risk prediction algorithm, which could be particularly advantageous given the

ease of recovering samples from diapers. Dietary or other interventions could be

targeted to these individuals before they begin to gain weight. Our results are from a

fairly homogeneous Norwegian cohort; thus, additional work would be necessary to

extend our findings to other populations and to explore how the patterns vary with

early-life exposures.

It is possible that the gut microbiota characteristics that we found to associate with

later BMI reflect aspects of the environment, particularly dietary and/or lifestyle pat-

terns, which may have independently influenced risk for obesity. Diet is one of several

factors that influence the gut microbiota (26, 27), and the gut microbiota may mediate

diet-induced obesity (5). The increasing association between gut microbiota at 1 and 2

years and later childhood BMI could thus be partly due to dietary factors that are

precursors to obesity and that increasingly shape the infant gut microbiota at those

ages. Taxa in the genus Bacteroides were selected as predictive of BMI in the 1- and

2-year gut microbiota, and this genus has been shown to be largely shaped by

environmental factors, including diet (27, 28). Studies of diet-induced obesity in mice

suggest that probiotics can protect against weight gain and metabolic abnormalities

(29, 30). Thus, even in the context of a poor diet, interventions may still protect against

weight gain.

Both maternal Ow/Ob and excessive GWG are predictors of obesity in children, both

in this cohort and in many others (31, 32). The maternal gut microbiota may contribute

toward offspring risk for obesity through vertical transfer, as well as through in utero

effects (33, 34). There is strong evidence that many early infant gut taxa are transferred

from the mother, particularly for certain taxa, including Bifidobacterium (35, 36). Strain-

level similarity between mothers and infants decreases over time, but species-level

composition converges (35). Our analysis of the overlap between maternal gut micro-

biota associated with Ow/Ob or excessive GWG and infant gut microbiota associated

with childhood BMI reflects both early OTUs that may have been transferred from the

mother (e.g., Bifidobacterium bifidum) and later-colonizing species that may reflect

shared environmental exposures (e.g., Blautia sp.).

The putative environmental source of some of these BMI-associated infant gut

microbiota taxa does not necessarily give us insight into whether they are predomi-

nantly a reflection of environmental factors that cause obesity or whether they are also

driving metabolic programming. While transfer of strains into gnotobiotic mice could

be an important future direction for resolving these causal links (as has been valuable

in linking population-level data to causal mechanisms in adult BMI [37]), there is

evidence to support the idea that environmentally derived microbes that colonize
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during a key time in development could have consequential long-term programming

effects (14, 38). Furthermore, although the association between infant gut microbiota

and childhood BMI became stronger as the infant aged, we did see associations within

the first months of life as well, and it is unlikely that this is driven by lifestyle factors

because the majority of babies in this cohort were exclusively breastfed, limiting the

influence of diet, and physical activity would not yet be a factor at this age. There is also

evidence that many of the taxa associated with BMI in our findings have immune or

metabolic modulating effects, such as early proteobacteria, Faecalibacterium prausnitzii,

and Bacteroides fragilis (39–41). We have limited understanding of the temporal inter-

play between gut microbiota taxa and the developing immune and metabolic systems

in early life, which may be of key importance. While inflammation and proinflammatory

gut microbiota are often associated with disease in adults (42), proinflammatory gut

microbiota may be an essential aspect of immune system training in early life (39, 43).

It is interesting to speculate about some of our findings in this context. For example,

species of Bifidobacterium are generally thought to promote health, particularly in

infants. Consistent with many prior studies, we found that early abundance of OTUs of

Bifidobacterium sp. and Bifidobacterium longum was associated with lower BMI (7, 11,

44). However, we found that Bifidobacterium bifidum at 10 days showed the opposite

association with BMI. While the positive association of B. bifidum at 10 days with

childhood BMI seen in our results could also be spurious, these findings are concerning

because strains of this species are included in many prenatal and infant probiotics. One

of the few prior studies that likewise examined gut microbiota at numerous early time

points in life found that infants with later acquisition of high levels of Bifidobacterium

and Collinsella had lower adiposity at 18 months of age (9). Thus, it is possible that the

timing of colonization by Bifidobacterium has important consequences for later adipos-

ity, or that there are important strain-level differences in the effects of Bifidobacterium

in early life. It is also possible that early colonization with higher levels of Bifidobacte-

rium bifidum reflects an earlier transition from an aerobic to an anaerobic environment

with a shorter colonization of important proinflammatory gut microbiota (9, 39).

Some of the associations between gut microbiota and childhood BMI seen in this

study support previous obesity-related research findings. For example, F. prausnitzii

abundance at 2 years predicted lower childhood BMI, as seen in adults (45). Higher

Streptococcus in the first months of life has been associated with higher adiposity (9)

and BMI (7), which is consistent with our results. Some prior studies have suggested

that higher Lactobacillus and lower Bacteroides levels in the first 3 months of life are

associated with higher risk for infant and child overweight (46), but we found the

opposite associations with childhood BMI.

This study has some important limitations. The samples were weighted toward

earlier time points, with fewer infants having samples at 1 and 2 years due to loss to

follow-up. We did not have strain-level metagenomic data, so our analysis of similarity

between mother-infant pairs is not definitive of vertical transfer. This cohort is almost

entirely ethnically Norwegian, and the non-Norwegians were typically from other

Nordic countries. Therefore, some of the taxonomic findings may not generalize to

other ethnic or racial groups or geographic regions. However, the results should be

internally consistent in terms of showing support for the notion that infant gut

microbiota is associated with later BMI and that maternal Ow/Ob may play a role in

shaping this composition. Obesity is a complex condition with complex etiology, and

there have been notable inconsistencies across human studies in terms of the associ-

ations with gut microbiota (45, 47, 48). Some of these inconsistencies could be due to

geographical, racial/ethnic, and genetic variation across study populations (49, 50).

Thus, the homogeneity in our study may have allowed us to isolate an association

between infant gut microbiota and later BMI that could be attenuated by population

heterogeneity in other cohorts, which would need to be further studied and under-

stood, as well as how these patterns vary across diverse early-life exposures. A primary

strength of this study is the large cohort of infants with repeated gut microbiota

samples during the first 2 years of life, maternal gut microbiota samples at the time of
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delivery, and the extensive data on maternal and infant characteristics and exposures,

which were controlled for in the analyses.

Overall, our findings show a strong association between infant gut microbiota at age

two and BMI at age 12 and show that the gut microbiota characteristics predictive of

later BMI precede excessive weight gain, suggesting that the gut microbiota could have

potential to help identify children at risk for obesity. We also found some support for

the hypothesis that maternal Ow/Ob may influence some of the infant gut microbiota

taxa that are associated with later BMI. Further studies of the specific bacteria high-

lighted in our results may also lead to greater understanding of the etiology of obesity.

MATERIALS AND METHODS

Study cohort. NoMIC is a Norwegian birth cohort of 552 children designed to study the establish-
ment of gut microbiota during infancy and its consequences for child health. Participating mothers,
recruited between 2002 and 2005, were asked to fill out periodic questionnaires and to collect and freeze
fecal samples from themselves at 4 days postpartum and from their infants at days 4, 10, 30, 120, 365,
and 730 postbirth. Study personnel retrieved the fecal samples and kept them frozen during transport
to the Biobank of the Norwegian Institute of Public Health, Oslo, where they were stored at �20°C upon
arrival.

The study was approved by the Regional Ethics Committee for Medical Research in Norway (approval
reference 2002, S-02216) and the Norwegian Data Inspectorate (reference 2002/1934-2). The approvals,
as well as signed informed consent from the mothers, were obtained prior to collection of data and
samples. The NoMIC study was funded by the FRIMEDBIO program at the Norwegian Research Council.

Study sample. This study includes 781 infant gut microbiota samples from 165 infants in NoMIC for
whom later childhood height and weight were available (median age, 11.7 years; IQR, 11.4 to 12.3), as
well as maternal height and prepregnancy weight. Samples were collected at days 4, 10, 30, 120, 365, and
730, with fewer samples at the 1- and 2-year sampling times (n � 147, 151, 155, 147, 118, and 63,
respectively). In our current analyses, we compared some of our results to prior work in which we
examined the association between maternal Ow/Ob (n � 169) and excessive GWG (n � 117) and
maternal gut microbiota 4 days postpartum in NoMIC (25). A subset of these women (n � 71) are mothers
of the 165 children included in our primary analysis, and their gut microbiota samples are included in the
taxonomic plots (see Fig. S1 and S2 in the supplemental material).

Data sources. Height and weight were measured by a study nurse at follow-up examinations when
the children were approximately 12 years of age (median � 11.7; IQR, 11.4 to 12.3; range, 10.8 to 13.4).
Age- and sex-specific BMI z-scores and percentiles were calculated based on CDC growth charts (51).
Childhood overweight and obesity were defined using these BMI percentiles according to CDC standards
(overweight, �85th percentile; obese, �95th percentile) (24). This age was chosen for the outcome
measure because it correlates with adult obesity more strongly than earlier measures of BMI (18).

Mothers also extracted information on infant height and weight from their “baby health visit” cards
and reported this information in questionnaires, providing this information for numerous ages during
childhood (range, 0 to 5 years; 99% of the measurements at �2 years; median number of measurements
per child, 7; IQR, 6 to 8). As recommended by the CDC, age- and sex-specific BMI z-scores were calculated
using WHO growth charts for ages under 2 years and CDC growth charts for ages over 2 years (51, 52).

Prepregnancy BMI was based on maternal self-report of weight at the first clinic visit of pregnancy;
the median time of the first visit was at 9 weeks of gestation (IQR, 7.3 to 11.3 weeks). Height and weight
were also measured at that visit. Prepregnancy BMI was initially categorized as: underweight, normal
weight, overweight, and obese according to standard definitions (53). We then further combined these
groups into (i) non-Ow/Ob (55.8%)—underweight (8.5%) and normal weight (47.3%)—and (ii) Ow/Ob
(44.2%)—overweight (30.9%) and obese (13.3%).

The definition of maternal excessive GWG was previously described for the NoMIC cohort (25). Briefly,
mothers who were missing GWG data or not full term were excluded because there are not well-
established weight gain recommendations for preterm births. The recommended range of the Institute
of Medicine (IOM) was used to define adequate GWG, which is based on prepregnancy BMI (54); weight
gain more than this amount for the respective BMI group was considered “excessive.” GWG was
calculated using the prepregnancy weight and final weight from self-report in a questionnaire approx-
imately 1 month postdelivery.

Maternal questionnaires at 1, 6, 12, and 24 months provided information on mode of delivery,
maternal age, education, parity, maternal smoking, ethnicity, infant sex, maternal and infant use of
antibiotics, breastfeeding practices, and introduction of solid foods. We obtained information on
gestational age at birth from the Medical Birth Registry of Norway.

Processing of microbial samples. DNA was extracted using standard protocols, as previously
described for this cohort (55, 56). The extracted DNA was amplified using PCR with barcoded primers
targeting the V4 region of the 16S rRNA gene. Sequences were generated using an Illumina HiSeq
instrument (Illumina, San Diego, CA). A total of 96,632,013 good-quality sequencing reads were obtained;
the median reads per sample were 111,943 (IQR, 80,207 to 155,887). Operational taxonomic units (OTUs)
were assigned using UCLUST (57) as implemented in QIIME v1.9.1 (58) via a closed reference-based
system using the Greengenes 13.8 (59) database and a 97% threshold. Across the maternal and infant gut
microbiota samples, there were 7,832 OTUs. A rarefied OTU table at 5,000 sequences per sample served
as input for the analyses.
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Statistical analysis. We compared child demographic and birth characteristics by overweight/obese
status at age 12 using chi-square tests for categorical variables and Wilcoxon rank sum tests for
continuous variables. We used principal coordinate analysis plots of weighted and unweighted UniFrac
(60) distance of the infant gut microbiota samples by sampling time, as well as the maternal gut
microbiota samples near the time of delivery, to visualize the changes in the microbial communities in
the samples with age. We evaluated the relationships between covariates and the infant gut microbiota
using permutational ANOVA of the UniFrac (unweighted and weighted) distance matrices at each time
point.

Regressions and random forests to assess the association between infant gut microbiota and

later childhood BMI z-score. In order to examine the association between overall infant gut microbiota
composition during the first 2 years of life and BMI z-scores at age 12, we first used Microbiome
Regression-Based Kernel Association Tests (MiRKAT) (61) of the unweighted and weighted UniFrac
distance matrices, which capture qualitative and quantitative differences in phylogeny, respectively. We
then evaluated whether specific taxa at each sampling time associated with later BMI using VSURF
(Variable Selection using Random Forests) (22) for feature selection at each sampling time. The VSURF
function is a multistep algorithm that selects the most important features for the prediction of the
outcome. We included all OTUs meeting the minimum threshold of presence in 10% of samples at that
time and a minimum of 0.1% for the maximum relative abundance of each sample, in addition to four
measures of alpha diversity: phylogenetic diversity (PD), Shannon diversity index, Chao1, and observed
species. We also included the following potential confounding variables: exclusive breastfeeding (yes/no
for samples �120 days; duration of exclusive breastfeeding for samples at later times), delivery mode,
antibiotic exposure (yes/no at each time), twin status, and gestational age at birth. See the directed
acyclic graphs (DAGs) in Fig. S3 in the supplemental material for a full description of the choice of
adjustment variables for this and following analyses and the relationships between exposures and
outcomes. We did not adjust for childhood diet, but this could not have affected the gut microbiota at
the earliest stages when the child was still mainly breastfed (first 4 months). We also did not adjust for
physical activity because until 2 years of age it would be unorganized and child controlled; anything after
2 years of age would not have affected the collected gut microbiota samples and thus would not meet
the definition of a confounding factor.

We then used repeated cross-validation (3-fold, 100 repetitions) of random forests in the caret (62)
package in order to evaluate the R2 of the selected features at each time to predict BMI z-score. This
method involves repeatedly using a subset of samples as a training set and the remaining samples as the
test set to predict the outcome. Since the confounding factors were not among the most important
selected features for prediction of BMI, we estimated R2 both with and without these factors.

Regressions to investigate the nature of the relationships between random forest selected gut

microbes and later childhood BMI z-score. Random forests are an ensemble technique that allow for
complex interactions between the predictors. While all of the microbiota features (taxa and alpha
diversity) selected by the VSURF tool may be important together to predict BMI, we also wanted to
understand whether these features individually had linear associations with BMI at age 12. Thus, we used
linear regression models for each sampling time with BMI z-score as the outcome and each feature
selected by the random forests (described above) as the predictor. Since microbiota features are highly
correlated, this method allowed us to assess the linear relationship with BMI for each feature. In these
models, we controlled for the same potential confounding variables as used in the random forests:
exclusive breastfeeding, delivery mode, antibiotics, twin status, and gestational age at birth. Since linear
regressions were used as a secondary step to aid in the interpretation of the random forest results rather
than as a tool for discovery applied to all taxa, multiple testing corrections were not applied to these
results. The strength of association was indicated by direction of association and strength of evidence for
a linear relationship: P � 0.01, 0.01 � P � 0.05, and no direct relationship.

Longitudinal trends in BMI z-scores over infancy and childhood. In order to assess whether BMI
z-scores at age 12 were similar to those during infancy and early childhood, we plotted BMI z-scores by
age using spaghetti plots. We additionally modeled the relationship using a mixed linear regression
model with BMI z-scores as the outcome and a random intercept by child. The predictors included age,
Ow/Ob status at age 12, and an interaction between age and Ow/Ob status. We used a t test to examine
whether there was a significant difference in BMI z-scores at age 2 (range, 1.5 to 2.5 years) between
children who were Ow/Ob at age 12 and those who were not for the subset of n � 104 children with BMI
data during that time frame. For ages 2 to 18, overweight is defined as a BMI z-score percentile of �85%
(24).

Comparison of maternal gut microbiota taxa associated with maternal Ow/Ob and excessive

GWG and the infant gut microbiota taxa associated with childhood BMI. In prior work, we examined
the association between maternal characteristics of prepregnancy Ow/Ob and excessive GWG with
maternal gut microbiota taxa at the time of delivery (25). We used Venn diagrams to illustrate the overlap
between the maternal taxa associated with these characteristics and the infant gut microbiota charac-
teristics associated with childhood BMI. We examined these taxa at both the OTU level and the most
specific assigned level of taxonomy.

Association between maternal Ow/Ob and excessive GWG and BMI-associated infant gut

microbiota. In order to assess whether the gut microbiota characteristics identified as predictive of BMI
at age 12 were also associated with exposure to maternal Ow/Ob or excessive GWG, we used permu-
tational ANOVA of the UniFrac (unweighted and weighted) distance matrices for the selected infant gut
microbiota features at each time point. Adjusted models controlled for exclusive breastfeeding, antibi-
otics, delivery mode at birth, and gestational age (see Fig. S3 for DAGs).
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We used SAS v9.4 (SAS Institute Inc., Cary, NC), R v3.3.2 (63), and QIIME v1.9.1 (58) for analyses. P
values less than 0.05 were considered statistically significant.

Availability of data and materials. Pursuant to the Norwegian Health Research Act and the Norwegian
Data Protection Act, approval from the Regional Ethical Committees is required for use (and storage) of
personal data related to health. The full data used for this study can thus be shared when a study protocol
has been approved by the Norwegian Regional Ethical Committees and a data transfer agreement has been
signed. Requests should be directed to Cathrine Thomsen (cathrine.thomsen@fhi.no) at the Norwegian
Institute of Public Health. The raw sequences and limited personal information about participants, including
age and sex, are available from the European Bioinformatics Institute (EBI), accession no. ERP111347.

SUPPLEMENTAL MATERIAL

Supplemental material for this article may be found at https://doi.org/10.1128/mBio

.01751-18.

FIG S1, EPS file, 0.04 MB.

FIG S2, JPG file, 0.02 MB.

FIG S3, TIF file, 0.8 MB.

FIG S4, TIF file, 0.4 MB.

TABLE S1, XLSX file, 0.1 MB.
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