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Background: Early-life indoor bacterial exposure is associated

with the risk of asthma, but the roles of specific bacterial genera

are poorly understood.

Objective: We sought to determine whether individual bacterial

genera in indoor microbiota predict the development of asthma.

Methods: Dust samples from living rooms were collected at

2 months of age. The dust microbiota was characterized by

using Illumina MiSeq sequencing amplicons of the bacterial 16S

ribosomal RNA gene. Children (n 5 373) were followed up for

ever asthma until the age of 10.5 years.

Results: Richness was inversely associated with asthma after

adjustments (P5 .03). The phylogenetic microbiota composition

in asthmatics patients’ homes was characteristically different

from that in nonasthmatic subjects’ homes (P 5 .02, weighted

UniFrac, adjusted association, permutational multivariate

analysis of variance, PERMANOVA-S). The first 2 axis scores of

principal coordinate analysis of the weighted UniFrac distance

matrix were inversely associated with asthma. Of 658 genera

detected in the dust samples, the relative abundances of 41

genera correlated (r > j0.4j) with one of these axes. Lactococcus

genus was a risk factor for asthma (adjusted odds ratio, 1.36

[95% CI, 1.13-1.63] per interquartile range change). The

abundance of 12 bacterial genera (mostly from the

Actinomycetales order) was associated with lower asthma risk

(P < .10), although not independently of each other. The sum

relative abundance of these 12 intercorrelated genera was

significantly protective and explained the majority of the

association of richness with less asthma.

Conclusion: Our data confirm that phylogenetic differences in

the microbiota of infants’ homes are associated with subsequent

asthma risk and suggest that communities of selected bacteria

are more strongly linked to asthma protection than individual

bacterial taxa or mere richness. (J Allergy Clin Immunol

2019;nnn:nnn-nnn.)
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Microbial exposures early in life can have a dual role in asthma
development. Early-life viral infections predispose to asthma and
also bacterial infections, and airway colonization by potential
respiratory bacterial pathogens can have a similar influence.1 On
the other hand, it is well recognized that microbial exposure in

utero and early life appear to be essential in instructing adaptive
and regulated immune system responses to other environmental
elements, such as allergens, particles, and viruses.2

Accordingly, intimate exposure to environments rich in
microbes, such as those associated with traditional farming
practices, might decrease the risk of asthma and other allergic
diseases.3 Earlier epidemiologic studies on homemicrobial expo-
sure and asthma were based on characterization of exposure
through measures of general microbial markers,4-7 such as
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Abbreviations used

aOR: Adjusted odds ratio

CE: Cell equivalent

MaAsLin: Multivariate association with linear model

PCoA: Principal coordinate analysis

PERMANOVA-S: Permutational multivariate analyses of variance

qPCR: Quantitative PCR

endotoxin in dust samples (reviewed by Doreswamy and Peden8).
We have previously shown in this cohort that the quantity of expo-
sure to bacterial and fungal cell-wall components in early life has
a bell-shaped association with asthma at the age of 6 years.9

Studies with DNA-based methods have indicated that the
asthma-protective characteristics might include diversity10-13 or,
more specifically, diversity within certain taxa and a lack of pre-
disposing microbes.14-17 However, it remains unclear whether
there are specific individual taxa in the indoor microbiome that
are independently associated with reduced asthma risk.

The overall objective of this study was to identify individual
bacterial genera from the early-life indoor environment that are
associated with the development of asthma until the age of
10.5 years. We also tested whether the protective association
between high bacterial diversity and asthma is independent of the
contributing microbes, as has been hypothesized.

METHODS
The study population consisted of children born in middle and eastern

Finland: the first half of the study population (n5 214) belonged to a European

birth cohort (Protection Against Allergy Study in Rural Environments

[PASTURE])18 among farmers and nonfarmers, whereas the second half of

the cohort consisted of unselected children (n 5 228).19 Pregnant women

who gave birth between September 2002 and May 2005 were recruited. The

selection procedure has been described earlier, and the study protocol was

approved by a local ethics committee in Finland.19 Written informed consent

was obtained from the parents.

Follow-up
The children were followed up with questionnaires,19 as described in the

Methods section in this article’s Online Repository at www.jacionline.org.

Ever asthma was defined as first parent-reported doctor-diagnosed asthma

and/or second diagnoses of asthmatic (or obstructive) bronchitis. Current

asthma was defined as ever asthma, with use of asthma medication and/or re-

ported wheezing symptoms in the past 12 months at the 10.5-year follow-up.

Wheezing phenotypes were created by using latent class analyses (see the

Methods section in this article’s Online Repository).

House dust samples
House dust samples were sequenced from 394 living room floor dust

samples. The protocols for dust collection at 2 months of age and analyses of

general microbial markers have been described previously.7,9 The protocol for

sequencing (V4 region of the 16S rRNA),20 data processing, and measuring

the relative abundances and quantitative PCR (qPCR; assay targeting the

16S rRNA gene) are described in the Methods section in this article’s Online

Repository. Bacterial richness (a measure of the number of different opera-

tional taxonomic units in each sample) and Shannon diversity (abundance

and evenness of the taxa in each sample) indices were calculated within sam-

ples. The ‘‘load’’ of the bacterial genus (ie, expressed as cell equivalents [CEs]

per square meter) was calculated by multiplying relative abundance with total

bacteria (CEs per milligram) in that sample, as measured by using qPCR and

amounts of dust, and dividing by sampling area (square meters).

Statistical analyses
Statistical analyses are described in more detail in the Methods section in

this article’s Online Repository. Generalized UniFrac-based principal coordi-

nate analysis (PCoA) was performed with QIIME, and the first 6 axis scores

(eigenvalues > 1) were used in the analyses. The adjusted association of bac-

terial composition and ever asthma was studied by using permutational multi-

variate analysis of variance (PERMANOVA-S).21

Kruskal-Wallis or t tests were used for comparing the relative abundances

of taxa in homes of asthmatic (ever asthma) and nonasthmatic children. For

multivariate models, the variables were ln-transformed (natural

logarithm 11, except diversity indices) and divided by interquartile range.

Discrete-time hazard models, generalized estimating equations, and multino-

mial logistic regression were used for analyzing asthma, respiratory symp-

toms, and wheezing phenotypes, respectively. The results are presented as

adjusted odds ratios (aORs) and their 95% CIs.

Oligotyping analysis was performed for the Lactococcus genus by using

entropy positions to increase taxonomic resolution.22Multivariate association

with linear models (MaAsLin)23 was run by using all of the most abundant

taxa (mean relative abundance, >0.1%) from the phylum level to the genus

level.

All models were adjusted for follow-up time, study cohort, living on a farm,

and well-known risk factors for asthma (maternal history of allergic diseases,

sex, number of older siblings, and smoking during pregnancy). Two selected

models were carefully tested for 25 additional confounding factors,7 but none

of these potential confounders changed the estimates of exposure by greater

than 10% and thus were not included in the analyses. At the age of 3 years,

the majority (80%) of the children still lived in the same house. Data were

analyzed by using SAS 9.3 for Windows (SAS Institute, Cary, NC).

RESULTS
Of the 442 children, 394 (89.1%) had data on the bacterial

microbiota in dust samples, and 373 (94.6%) of those had
sufficient data to assess asthma until the age of 10.5 years and
information on covariates. By the age of 10.5 years, 69 (18.5%)
children had ever asthma, and 29 (7.8%) had current asthma at
10.5 years.

Bacterial diversity in the homes of asthmatic
patients and nonasthmatic subjects

The bacterial richness and Shannon diversity index were lower
in the homes of children with ever asthma than in the homes of
nonasthmatic subjects (Fig 1).When themodels were adjusted for
confounding factors, bacterial richness was inversely associated
with ever asthma, and the Shannon index qualified as a trend
(P 5 .03 and P 5 .12, respectively; Table I).

UniFrac-based weighted PCoA axis scores and
asthma

The overall microbiota composition between asthmatic pa-
tients and nonasthmatic subjects was significantly different, as
indicated by weighted UniFrac b-diversity analysis (P 5 .02,
adjusted association, PERMANOVA-S). The first 2 PCoA axis
scores (PCoA1 and PCoA2) explained 36% of the variance in
the weighted UniFrac dissimilarity distance matrix (Fig 2). The
PCoA1 and PCoA2 axis scores were inversely associated with
ever asthma (Table I). The first axis score appeared to reflect
the ratio of Firmicutes and Proteobacteria in the samples, with
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negative correlation with Firmicutes and positive correlation with
Proteobacteria abundance at the phylum level. The second axis
score appeared to reflect diversity and Actinobacteria abundance
seen as a positive correlation with both (Fig 3). The fourth most
common phylum, Bacteroidetes, had a weak positive correlation
with both axis scores (Fig 3). There were no significant associa-
tions between the other 4 PCoA axis scores (eigenvalue > 1)
and ever asthma (see Table E1 in this article’s Online Repository
at www.jacionline.org).

Phylum and genus levels in homes of asthmatic
children and nonasthmatic children

At the phylum level, the relative abundance of Firmicutes was
greater and that of Actinobacteria was lower in the homes of

asthmatic children than in the homes of nonasthmatic children
(see Fig E1 in this article’s Online Repository at www.
jacionline.org). At the genus level, the relative abundances of
Lactococcus species (Firmicutes) and Streptococcus species
(Firmicutes) were greater, but the relative abundance of Sphin-
gomonas species (Proteobacteria) was lower in the homes of
asthmatic patients than the homes of nonasthmatic subjects
(Fig 4). Consistent with results on richness, the combined rela-
tive abundance of the rest of the genera (mean relative abun-
dance, <1%) was lower in the homes of asthmatic children
than in the homes of nonasthmatic children (43.0% vs 47.8%,
respectively; P < .001).

Bacterial genera and asthma
Of 658 detected bacterial genera, 139 bacterial genera had a

mean relative abundance of greater than 0.1%, and they were
studied further. Forty-one of the 139 genera correlated (r > j0.4j)
with either or both PCoA1 and PCoA2 axis scores (see Table E2 in
this article’s Online Repository at www.jacionline.org). After ad-
justments, the relative abundances of the 12 genera were inversely
(P <.1) associated with the development of ever asthma and Lac-
tococcus species was positively (P 5 .001) associated with the
development of ever asthma (Fig 5). Lactococcus species (median
relative abundance, 3.9%) was the only genus that was associated
with greater risk of ever asthma after correction for multiple
testing (Bonferroni). High positive correlation coefficients
(mostly r 5 0.5-0.8) were found within the relative abundances
of these 12 genera, except for Brevibacterium species and other
genera within the Dermabacteraceae family, which had clearly
lower correlation coefficients (see Fig E2). When the negative as-
sociations of the 12 genera and the positive association of Lacto-
coccus species were mutually adjusted in the model of ever
asthma, only the positive association of Lactococcus species
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FIG 1. Box plots of bacterial richness (A) and the Shannon diversity index (B) in homes of children with

asthma ever (gray boxes) and in homes of nonasthmatic children (white boxes). Richness is the number

of different operational taxonomic units in a sample. Box plots present minimum, first quartile, median,

third quartile, and maximum values. P values are from t tests.

TABLE I. Associations between richness, Shannon index, the

first 2 axis scores (PCoA1 and PCoA2) and development of

ever asthma until the age of 10.5 years and current asthma

Ever asthma Current asthma

aOR (95% CI) P value aOR (95% CI) P value

Richness 0.61 (0.39-0.95) .03 0.55 (0.27-1.12) .10

Shannon index 0.77 (0.55-1.07) .12 0.76 (0.45-1.30) .32

PCoA1 0.74 (0.57-0.98) .03 0.76 (0.50-1.16) .20

PCoA2 0.75 (0.55-1.02) .07 0.59 (0.36-0.98) .04

aORs are expressed as interquartile range changes in the estimate (ln-transformed in

axis scores). PCoA1 indicates the first axis score of weighted UniFrac-based PCoAs.

PCoA2 indicates the second axis score of weighted UniFrac-based PCoAs. Discrete-

time hazard models are adjusted for follow-up time, cohort, living on a farm, sex,

maternal history of allergic diseases, maternal smoking during pregnancy, and number

of older siblings. The number of subjects at the beginning of the survey/total number

of observations in the analyses/number of outcomes in the ever asthma model

(n 5 373/2387/69, respectively) and in the current asthma model (n 5 310/2333/29,

respectively) are shown.
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remained significant (see Fig E3 in this article’s Online Reposi-
tory at www.jacionline.org).

The relative abundances of the 12 protective genera were thus
added up into a new variable because of their high intercorrela-
tion. The sum abundance of the 12 protective genera (median
relative abundance, 5.2%) was dose-dependently associated with
ever asthma (aOR of 0.48 [95% CI, 0.26-0.85; P 5 .01] for the
middle tertile and aOR of 0.31 [95% CI, 0.15-0.63; P 5 .001]
for the highest tertile; compared with the lowest tertile). The
sum abundance of the 12 protective genera and the Lactococcus
genus were independent predictors for having ever asthma (data
not shown). Associations with current asthmawere largely similar
(data not shown).

The predisposing association between the relative abundance
of Lactococcus species and the inverse association of the sum
abundance of the 12 protective genera with ever asthma were in-
dependent of bacterial richness, the Shannon index, amounts of
dust, endotoxin, LPS10:0-16:0, and muramic acids (see Table E3
in this article’s Online Repository at www.jacionline.org). The
sum abundance of the 12 protective genera explained 61% of
the association between richness and ever asthma (see Table E4
in this article’s Online Repository at www.jacionline.org).
Environmental and behavioral determinants associated with
reduced signals of asthma predisposing to Lactococcus species
abundance and an increase in asthma protection–associated
microbes included animal and farm contacts, timber structures,
age of the house, and natural ventilation (see the Results
section and Table E5 in this article’s Online Repository at
www.jacionline.org).

Bacterial exposure and wheezing phenotypes
In analyses of wheezing phenotypes (based on latent class

analyses) during the first 6 years of life, no associations were
found between the relative abundance of Lactococcus species, the
sum abundance of the 12 protective genera, diversity indices, and
transient wheeze, which is mostly related to infection in early age
(see Table E6 in this article’s Online Repository at www.
jacionline.org). Numbers of cases in the late-onset and persistent
wheeze groups were small, and associations were toward the
same directions than with ever asthma but clearly weaker. How-
ever, there was a tendency toward inverse associations between
the sum of 12 protective genera and late-onset and persistent
wheeze (P < .20). When exploring associations with respiratory
symptoms, similar but mostly nonsignificant associations, as
with asthma ever, were found, except for Lactococcus species,
which had weaker associations with wheezing (see Table E7 in
this article’s Online Repository at www.jacionline.org).

Oligotypes of Lactococcus species and asthma
Oligotyping analysis was performed with Lactococcus genus,

and 10 oligotypes were created to increase taxonomic resolution
for the finding of the taxon being associated with ever asthma (see
Table E8 in this article’s Online Repository at www.jacionline.
org). Most of the sequences belonged to the GGCCAAGGA oli-
gotype (95% of all sequences), which had the greatest mean rela-
tive abundance (7.2%) and correlated with relative abundance of
the Lactococcus genus and operational taxonomic unit number
1100972 (r 5 0.99). For this oligotype, the 2 best Basic Local

FIG 2. Plot of PCoA1 and PCoA2 axis scores by ever asthma status. PCoA1 represents the first and PCoA2

represents the second axis scores from weighted UniFrac-based PCoAs: children with ever asthma (red

dots) and nonasthmatic subjects (black dots). Percentages of variance explained by axis scores are shown

in parentheses. Red and black ellipses represent 95% CIs from t tests for children with ever asthma and non-

asthmatic children, respectively.
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Alignment Search Tool hits from the National Center for Biotech-
nology Information database were uncultured bacterial clone
1714 and Lactococcus lactis (lactis gene for 16S rRNA) with
100% similarity (identity and coverage). Relative abundances
of each of the 10 oligotypes were positively associated with the
development of ever asthma after adjustments (P < .15). Correla-
tions among the 10 oligotypes ranged from 0.28 to 0.70 (mostly
>0.45). When the relative abundances of 10 oligotypes were
simultaneously adjusted, none of them were significantly associ-
ated with ever asthma (data not shown).

Loads of bacterial genera, total bacterial qPCR, and
asthma

Associations with ever asthma were slightly weaker when
loads of the bacterial genera (ie, expressed as CEs per square
meter) were used instead of relative abundance, except for the
Lactococcus genus, for which the estimate was stronger (see
Table E9 in this article’s Online Repository at www.jacionline.
org). Correlations between the relative abundances of sequences
of the 13 bacterial genera and their loads were fairly high
(r 5 0.57-0.79). Total bacterial qPCR was not associated with
ever asthma or current asthma (data not shown).

MaAsLin
MaAsLin identified the relative abundance of 9 taxa that were

significantly associated with ever asthma after multiple testing
was taken into account (q value < 0.05). The strongest association
was found with Lactococcus species (see Table E10 in this arti-
cle’s Online Repository at www.jacionline.org). For the rest of
the taxa, other genera within theMicrobacteriaceae family, which
was one of 12 protective genera, were also identified.

DISCUSSION
The present study suggests that phylogenetic differences in the

early home indoor microbiota composition precede asthma
development, and this association is not explained by bacterial
richness alone. Of 658 genera detected in dust samples, only the
relative abundance of Lactococcus genus was determined as an

independent risk factor for asthma. Twelve bacterial genera
(mostly from the order Actinomycetales) were identified as pro-
tective. The sum of the relative abundance of these 12 protective
genera was significantly protective and explained the majority of
the association of richness with less asthma.
We found a similar inverse association between bacterial

richness and asthma, as has been reported in 2 recent cross-
sectional studies from rural areas.10,12 Another nested case-
control study with children at high risk of allergy from an urban
environment by Lynch et al14 found a similar association between
bacterial richness and atopy and recurrent wheeze together with
atopy but not wheeze by itself at the age of 3 years. In contrast,
a study among asthmatic patients showed that high levels of bac-
terial richness in homes was associated with more severe asthma
symptoms compared with homes with low bacterial richness in
house dust.24 This might be explained by the notion that bacterial
richness might have different importance to asthma severity than
to asthma development, something that has been found earlier
with high endotoxin exposure.25 Thus our findings support earlier
observations that a diverse environmental microbial exposure at
early age through ingestion, inhalation, and/or the skin might be
essential for stimulating immune development to respond appro-
priately to other environmental elements.2

The phylogenetic composition of the microbiota was signifi-
cantly different in house dust of asthmatic patients and non-
asthmatic subjects, as found with the PERMANOVA-S analysis
method, which uses UniFrac distance, a measure of similarity and
dissimilarity of the bacterial composition between samples. Of
the 12 protective genera identified, 7 were from the order
Actinomycetales, which are found in outdoor environmental
sources (eg, soil, fresh water, and compost). The 12 genera were
intercorrelated, and thus it was not surprising that individual
genera were not associated with asthma protection independently
from each other, although their sum abundance was associated.
Whether the 12 protective genera had a common source or distinct
functional influence on asthma development remains unclear.
Interestingly, the association between bacterial richness and
asthma was largely explained by the sum abundance of the 12
protective genera but not by the low relative abundance of Lacto-
coccus species. This suggests that particular compositions of bac-
terial exposure, the source of which is outdoors, better predict the

FIG 3. Spearman rank correlation coefficients between the first 2 axis scores, PCoA1 (light gray columns)

and PCoA2 (dark gray columns), and the 4 most abundant bacterial phyla, richness, and Shannon index.
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development of asthma than overall bacterial richness. However,
the taxa that were identified and combined in the present study
should be confirmed by other studies in different environments
and in different geographic areas, and their potential protective
functions should be explored.

This study revealed a genus of gram-positive bacteria,
Lactococcus species (belonging to the Firmicutes phylum and
Streptococcaceae family), that increased the risk of asthma
independently of microbial diversity. Lactococcus species is the
most prevalent genus in raw and pasteurized cow’s milk,26 is
used in manufacturing of fermented dairy products, and is also
found in soil. In the oligotyping analyses the vast majority of
the sequences of Lactococcus species were allocated to one
specific oligotype (GGCCAAGGA) that had the strongest effect
on asthma development and that, based on the Basic Local
Alignment Search Tool analyses, might refer to Lactococcus

lactis. Although there is a small but growing literature on
early-life environmental microbial exposures and development
of wheeze and asthma in children, no previous study has shown
an association with Lactococcus species. A previous study27

found in a murine and experimental model that exposure to the
Lactococcus lactis G121 strain along with another bacterial
strain, Acinetobacter lwoffii F78, which were both isolated from
farm stables, prevented experimental allergic asthma in mice.
The gram-positive L lactis G121 especially activated cells
through nucleotide-binding oligomerization domain-containing
protein 2 and Toll-like receptor 2. In our study we observed that
the Lactococcus genus and its oligotypes were significant risk
factors for asthma. Because of similar associations between
Lactococcus species and ever asthma among children from farms
and nonfarms, it is unlikely that farm milk is the source of
Lactococcus species in the present study. However, our
sequencing analyses method was not designed to enter into the
strains/species level with confidence, which is a general weakness
of the amplicon sequencing method. Whether the Lactococcus

species is a true risk factor for asthma or a proxy of other
predisposing factors, such as a particular lifestyle or nutrition,
remains to be determined in experimental and other
epidemiologic studies, including quantitative and specific
detection (eg, by using qPCR) of Lactococcus species.

FIG 4. Relative abundances of the bacterial genera in living room dust (at age 2 months) from homes of

children with ever asthma (A) and without asthma (B). The 641 genera with a mean relative abundance of

less than 1% in the whole data set are combined in the sum variable. Phylum names are shown in paren-

thesis. U, ‘‘Unassigned’’ genus within a family; O, ‘‘other’’ genus within a family. *P < .05, Kruskal-Wallis

test.
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We have previously shown in this cohort that farm-like
bacterial relative abundance patterns in indoor microbiota are
associated with asthma protection by 6 years of age.15 There was
little overlap between the specific genera identified in the current
study to be associated with asthma after adjustment for farming
and the best predictors of the farm-like indoor microbiota
composition identified in our previous study. However, there
were phylogenetic similarities because both imply importance
of high abundance of members within the Actinobacteria
phylum. In contrast, there was little or no overlap among the
13 genera identified in the present study and taxa that have
been associated with lower asthma risk in other previous
studies.10,12,14,16,17 In these studies minimal10,12 to no14,16,17

adjustments have been made for potential confounders, and

comparability with our results is also influenced by other
differences, including those in sampling material, micro-
biological determinations, outcomes, and study designs
(eg, prospective vs cross-sectional). A commonality in the
present study and some of the previous studies has been that
rather than diversity as such, it is certain compositional aspects
within bacterial diversity that explain associations between
indoor bacterial exposure and asthma. Further studies aiming
at functional profiling, such as through metagenomics,
metabolomics, or experimental studies, are needed to
characterize the potential asthma-protective properties that
might be identified by the bacterial taxa described here.
Mechanisms behind the association between environmental

microbial exposures in early life and asthma protection are not

FIG 5. aORs (95% CIs) between the selected 41 genera and asthma ever. Genera have been ordered by

phylum. aORs are expressed as interquartile range changes in the estimate (ln-transformed). Models are

adjusted for follow-up time, living on a farm, cohort, sex, maternal history of allergic diseases, maternal

smoking during pregnancy, and number of older siblings. U, ‘‘Unassigned’’ genus within a family; O,

‘‘other’’ genus within a family; C, Chloroflexi (phylum).
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well understood. Evidence from epidemiologic and experimental
studies show that specific microbial exposures, such as those
encountered in farming environments or homes with dogs, trigger
receptors of the innate immunity,28 might increase epithelial bar-
rier function in the airways and the presence of immunosuppres-
sive cells, suppress responsiveness toward microbial
immunogens, and reduce allergen-induced airway inflamma-
tion.15,16,29,30 Exposure to rich and diverse microbiota might
have a positive effect on airway colonization, which might in
turn defend against viral infections and thus contribute to asthma
prevention.31,32 In addition, there is evidence frommurinemodels
that exposure to microbes in house dust modulates intestinal mi-
crobiota and might, at least partially, mediate the effect on im-
mune responses in the airways.30,33 Whether this would also
apply to human subjects remains unknown. There is evidence
that environmental factors, such as dogs, can influence human
gut microbiota composition,30,34 but overall, this influence is
thought to be limited.1

In the present study, few environmental and behavioral
determinants such as increased animal contacts, natural as
opposed to mechanical ventilation and timber structures were
associated with increase in asthma protection associatedmicrobes
and with decrease in the asthma predisposing Lactococcus

abundance. These and future findings from more focused studies
could direct public health initiatives for asthma prevention. Such
initiatives might be efficient ways to reduce the allergy and
asthma burden, as indicated by the Finnish Allergy Program,
which provided practical recommendations for behavior
modification.35

The main strengths of the present study are the prospective
birth cohort design with high participation rates and an extensive
set of microbial exposure measurements, including high-
resolution next-generation sequencing data, DNA-based targeted
qPCR, and general microbial markers. Dust samples were
collected from living room floors in early childhood, which has
been shown to be an important time window for intensive
maturation of the adaptive immunity.3 Long-term active air sam-
pling, which is the best way to assess exposure, is logistically and
technically challenging in large cohorts, and thus surrogates of
airborne microbial exposure are used almost exclusively.36 Floor
dust better represents the overall environmental exposures carried
from outdoors to indoors than, for example, bed dust, which likely
reflects the human-associated microbiota.37 However, dust from
floors/rugs will only be partially resuspended into the air with a
size that is inhalable and thus only partially contributes to inhala-
tion exposure. Recently, we have shown that the microbiota of
floor dust are not fully consistent with the microbiota of infant
breathing zone air, but the microbiota of bulk air in a room are
also not fully representative of the particular infant breathing
exposure on activities near the floor.38As noted earlier, oral inges-
tion exposure or exposure through the skin during the first years of
life might be relevant as well.2

One weakness of our study is that the taxonomic resolution of
the sequencing approach did not, in general, allow species-level
identification. Future studies will have to implement
metagenomics (shotgun sequencing) approaches or more
targeted approaches, such as qPCR or chip-based hybridization
techniques, once knowledge on specific targets has accumulated
to overcome this restriction in taxonomic identification.

In conclusion, our data confirm that phylogenetic differences in
home microbiota influence asthma risk and suggest that

communities of selected bacteria are more strongly linked to
asthma protection than individual bacterial taxa or richness.
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Key messages

d Childhood asthma risk is affected by bacterial composi-

tion of the early-life home indoor microbiota.

d Communities of bacteria, rather than an individual taxon

or overall bacterial diversity, are most strongly linked to

asthma protection.
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