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SUMMARY

Hibernation is an adaptation that helpsmany animals

to conserve energy during food shortage in winter.

Brown bears double their fat depots during summer

and use these stored lipids during hibernation.

Although bears seasonally become obese, they

remain metabolically healthy. We analyzed the mi-
crobiota of free-ranging brown bears during their

active phase and hibernation. Compared to the

active phase, hibernationmicrobiota had reduced di-

versity, reduced levels of Firmicutes and Actinobac-

teria, and increased levels of Bacteroidetes. Several

metabolites involved in lipid metabolism, including

triglycerides, cholesterol, and bile acids, were also

affected by hibernation. Transplantation of the bear
microbiota from summer and winter to germ-free

mice transferred some of the seasonal metabolic fea-

tures and demonstrated that the summer microbiota

promoted adiposity without impairing glucose toler-

ance, suggesting that seasonal variation in the mi-

crobiota may contribute to host energy metabolism

in the hibernating brown bear.

INTRODUCTION

Free-ranging brown bears (Ursus arctos) undergo cycles of

intense eating and weight gain during the summer followed by

prolonged dormant hypometabolic fasting for up to 6 months

during the winter (Evans et al., 2012; Tøien et al., 2011). Despite

the large fat accumulation before hibernation, bears remain

metabolically healthy (Arinell et al., 2012; Nelson, 1973; Stenvin-

kel et al., 2013), which contrasts with the strong association be-

tween obesity and insulin resistance in humans. Thus, the brown

bear may constitute a model for healthy obesity and studying

hibernation might be a promising approach to develop novel

therapies for obesity. The intestines of mammals harbor diverse

microbial ecosystems that have profound effects on host phys-

iology (Sommer and Bäckhed, 2013). The gut microbiota con-

tributes to energy harvest from the diet (Bäckhed et al., 2004,

2007; Sommer and Bäckhed, 2013; Sommer et al., 2015) and

is altered in obesity and type 2 diabetes (Khan et al., 2014).

Furthermore, diet, which is seasonably variable in bears (Pers-

son et al., 2001; Stenvinkel et al., 2013; Stofik et al., 2013),

strongly affects the gut microbiota (Ley et al., 2008; Zoetendal

and de Vos, 2014) and both fasting and hibernation alter the

gut microbiota composition (Carey et al., 2013; Crawford et al.,

2009; Dill-McFarland et al., 2014; Sonoyama et al., 2009).

Here, we investigated how hibernation in free-ranging brown

bears affects the gut microbiota and plasma metabolites, and

whethera seasonally alteredmicrobiotacontributes to thehealthy

obesity phenotype during summer. We used 16S rRNA profiling

and next-generation sequencing to comprehensively analyze

the fecal microbiota of free-ranging brown bears captured during

hibernation (February) and during the active period (June) of the

same year (Figure 1A). We showed that the winter microbiota

comprised fewer bacterial taxa (Figure S1A) and was more ho-

mogenous than the summer microbiota (Figure S1B), which

may reflect the varied diet among bears during the summer.

RESULTS AND DISCUSSION

Principal coordinate analysis of the overall composition of the

bear fecal microbiota samples using unweighted UniFrac re-

vealed a clear separation depending on the seasonal origin (Fig-

ures 1B and S2). We identified 24 bacterial phyla in the bear fecal

microbiota (Table S1). The dominating bacterial phyla in the

summermicrobiotawereProteobacteria, Firmicutes, andActino-

bacteria (Figure 1C). In the winter microbiota, Bacteroidetes

increased in abundance, whereas Firmicutes and Actinobacteria

were less abundant (Figure 1D). A number of low abundant phyla

were only present in the summer microbiota (Figure S3A). At the

species level, 199 of the 4,447 detected operational taxonomic

units (OTUs) were significantly altered (q < 0.05; q = FDR
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corrected p value) between winter and summer (Table S1). The

most significant among these were OTU 4343627 (Bacteroides

fragilis), whichwas enriched in thewinter, andOTUs 109107 (Hel-

icobacter spec.), 237444 (Streptococcus spec.), and 836919

(Wolbachia spec.), whichwere reduced inwinter (Figure 1E).Wol-

bachia are symbionts of several insects (Hedges et al., 2008;

Teixeira et al., 2008), and the increased abundance during sum-

mer presumably results from the intake of insects as part of the

bear summerdiet (Großeet al., 2003). Furthermore, thewintermi-

crobiota had higher levels of several Enterobacteriaceae and

lower levels of several Rhizobiales and Actinomycetales species

(Figures S3B–S3D).
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Figure 1. Seasonal Differences in the Bear

Fecal Microbiota

(A) Seasonal cycle of the brown bear.

(B) Principal coordinate analysis of the bear fecal

microbiota from summer and winter.

(C) Bacterial taxonomic representation in bear

microbiota in summer and winter on phylum level.

(D) Significantly altered bacterial phyla between

summer and winter in bear microbiota.

(E) Relative abundance (%) of high-abundant and

season-dependent OTUs of the bear fecal micro-

biota.

Data are mean ± SEM n = 8 for summer and n = 15

for winter. *q < 0.05; **q < 0.01; ****q < 0.0001.

An enrichment of Bacteroidetes and

lower relative abundance of Firmicutes

has previously been observed in the mi-

crobiota of hibernating animals (Carey

et al., 2013; Dill-McFarland et al., 2014;

Sonoyama et al., 2009; Stevenson et al.,

2014). The increase in Bacteroidetes

may be explained by their capacity to

switch their metabolism toward degra-

dation of host glycans in the absence

of dietary polysaccharides (Sonnenburg

et al., 2005) or their capacity tometabolize

protein and fat (Wu et al., 2011) putatively

provided by the intestinal epithelium. In

contrast, most Firmicutes taxa require di-

etary fiber. These changes in the micro-

biota phyla were accompanied by a loss

of weight and body fat in the hibernating

bear. Similar trends have been reported

in studies comparing obese and lean sub-

jects (Ley et al., 2005) or using calorie re-

striction in humans and mice (Crawford

et al., 2009; Furet et al., 2010; Ley et al.,

2006; Turnbaugh et al., 2009). Further-

more, two studies of calorie-restricted

mice reported an increase in Bacteroides

fragilis (Santacruz et al., 2009) but reduced

Streptococcaceae and TM7 (Zhang et al.,

2013). Bacteroides fragilis was the pre-

dominant bacterium in the microbiota

from the hibernating bears, whereas both

Streptococcus and TM7 were reduced during hibernation.

Together these data indicate that many of the changes in the

bearmicrobiota are associated with caloric restriction. In contrast

to small hibernators, Verrucomicrobia including Akkermansia

muciniphilawere not increased during hibernation in free-ranging

brown bears.

To identify metabolites that varied according to the activity

status of the bears, we used targeted metabolomics to analyze

blood samples taken from the jugular vein during winter and

summer. Supporting previous publications (LeBlanc et al.,

2001; Otis et al., 2011), we found that serum levels of cholesteryl

esters, triglycerides, and free cholesterol were significantly
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higher in winter (Figures 2A–2C; Table S2). This finding is consis-

tent with the fact that energy from fat stores is obtained by lipol-

ysis during hibernation (Arinell et al., 2012; Nelson, 1973). Even

chain acylcarnitines, which largely represent intermediates of

mitochondrial fatty acid oxidation (FAO), were also higher in

winter (Figure 2D), in agreement with high FAO activity during hi-

bernation. In contrast, C3 and C5 acylcarnitines, markers of

amino acid oxidation, were decreased during hibernation (Table

S2). Finally lactate (Figure 2E) and the levels of several gluconeo-

genic amino acids (e.g., alanine, methionine, tyrosine) were

reduced (Table S2) during winter compared to summer, whereas

succinate was increased, which could indicate reduced glucose

utilization and increased gluconeogenesis. Taken together,

these data suggest that during hibernation bears mobilize and

oxidize lipids as survival strategy, accompanied by reduced

glucose utilization and increased utilization of amino acids

for gluconeogenesis. The decreased lactate levels were also

consistent with decreased abundance of lactate-producing bac-

teria during hibernation; e.g., the Firmicutes Bacillus or Lactoba-

cillus and the Actinobacteria Micrococcus (Reddy et al., 2008).

Similarly, the increased succinate levels during hibernation

correlate with increased abundance of succinate-producing

bacteria such as Enterococcus (Song and Lee, 2005) in the

winter microbiota. However, the host can also produce lactate

and succinate, and thus seasonal changes in host metabolism

might also contribute to the differences in lactate and succinate.

We also observed that total bile acid levels in the serum were

lower in thewinterwith large reductions in primary and conjugated

bile acids (Figure 2G; Table S2). Notably, expression of the rate-

limiting enzyme of bile acid production CYP7A1 is reduced in the

liver of hibernating mammals (Fedorov et al., 2011; Otis et al.,

2011), and themicrobiotacontributes tomodificationsofbileacids

(Sayin et al., 2013). Bile acids promote lipid uptake and respond to

food intake.Bearsdonot eat for up to6monthsduringhibernation,

which likely explains the reduced bile acid levels in the winter.

Levels of deoxycholic acid and lithocholic acid, both of which

are dependent on themicrobiota, areknown tohavehemolytic ac-

tivity (Oelberg et al., 1984; Schölmerich et al., 1984) and were

reduced during hibernation (Table S2). Notably, several blood pa-

rameters that are linked to hemolysis and dehydration were also

altered during hibernation (Table 1). For example, levels of red

blood cells and hemoglobin were higher in the winter, whereas

lactate dehydrogenase (marker of hemolysis) and bilirubin (used

during recycling of hemoglobin) levels decreased during hiberna-

tion. Thus, microbiota-dependent changes in the bile acid profile

might contribute to the reduced hemolysis during hibernation.

To test whether the seasonal differences in the bear microbiota

affect host physiology, we colonized germ-free mice with a
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Figure 2. Seasonal Differences in Metabolites in Bear Blood

(A–G) Concentrations of the lipid classes (A) cholesteryl esters, (B) triglycerides, and (C) free cholesterol and of (D) even chain acylcarnitines, markers of FAO, and

of the organic acids (E) lactate and (F) succinate, and of (G) bile acid classes in bear blood from summer and winter. Data are presented as mean ± SEM n = 12 for

summer and n = 15 for winter. *q < 0.05; **q < 0.01.
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summer or winter bear microbiota (Figure 3A). 16S rRNA profiling

of the colonized mice confirmed successful colonization (Figures

3B and S4). There was no seasonal difference in alpha diversity,

possibly because all mice received the same food.Mice colonized

with a summer bear microbiota trended toward a greater weight

(p = 0.09) and showed a greater fat gain than mice colonized

with a winter bear microbiota (Figures 3C and 3D) but did not

display a significant difference in epididymal white adipose tissue

weight (Figure 3E). In humans, adiposity is associated with

reduced insulin sensitivity (Shulman, 2014). In contrast, brown

bears seem to become only temporarily insulin resistant with

mild hyperglycemia during hibernation but remain insulin sensitive

during the rest of the seasonal cycle independent of fat accumula-

tion (L. Nelson, personal communication; Stenvinkel et al., 2013).

The increased weight and adiposity of the mice colonized with a

summer bear microbiota were not due to higher bacterial abun-

dance as tested by 16S rDNA qPCR (summer 2.27 ± 1.163 1011

and winter 2.55 ± 1.03 3 1011 16S rDNA copies/g cecal content,

p = 0.6). Despite their increased fat mass, mice colonized with

summer bear microbiota showed no differences or even a slight

improvement in glucose metabolism compared tomice colonized

with a winter microbiota (Figure 3F). By performing targeted me-

tabolomics, we showed that the seasonal metabolic phenotype

of the bears could be partially transferred to germ-free mice by

colonization with a bear microbiota. For example, mice colonized

with awinter bearmicrobiota trended toward slightly higher serum

levels of cholesteryl esters (Table S2) and triglycerides (Figure 3G)

comparedwithmice thatwere colonizedwith summermicrobiota.

Conclusions

In conclusion, our data show that the seasonal lifestyle of the

brown bear with phases of severe hyperphagia and fat accumu-

lation in the summer and prolonged fasting and inactivity during

hibernation is accompanied by seasonal changes in metabolism

andmicrobiota. Furthermore, colonizationwith the seasonal bear

microbiota was sufficient to transfer some of the seasonal meta-

bolic features to germ-freemice. Together thismight indicate that

the seasonal differences in the bear microbiota contribute to the

seasonal metabolic changes, presumably due to the different

physiologic demandsof phasesof severe hyperphagia andhiber-

nationwith prolonged fasting. Thus, themicrobiotamaybe linked

to the healthy obesity phenotype in brown bears and as such not

only yields insights into the physiology of hibernating mammals,

but also further supports targeting the microbiota as potential

treatment of obesity. However, studying free-ranging animals

also limits our information regarding, e.g., seasonal food intake

and the experimental procedures that can be performed.

Although informative, our findings from the colonization of

germ-free mice cannot adequately reflect the physiologic state

in a hibernating bear. Thus, further mechanistic studies using,

e.g., bears in captivity in which calorie content, food consump-

tion, microbiota composition, and the animal’s physiology can

be controlled, are required to functionally validate and elucidate

which components of the microbiota contribute to the seasonal

metabolic differences and the involved molecular pathways.

EXPERIMENTAL PROCEDURES

Blood and fecal samples were taken from 16 free-ranging Eurasian brown

bears (Ursus arctos) during hibernation (February or March) and during the

active period (June) of the same year.

Germ-freemice were colonized with a winter or summer bear fecal microbiota

by oral gavage. Body composition was analyzed before and 14 days after colo-

nization by MRI (EchoMRI) according to the manufacturer’s instructions. Intra-

peritoneal glucose tolerance test was performed on day 15 post-colonization.

Table 1. Signs of Dehydration and Reduced Hemolysis in Blood of Hibernating Brown Bears

Parameter Unit Summer Mean (Range) Winter Mean (Range) Ratio W/S p Value

Total bile acids nM 1,762 (137–4,379) 606 (171–1,177) 0.3 <0.01

White blood cells 109/l 7.7 (3.4–15.7) 6.2 (3.8–15.6) 0.8 ns

Red blood cells 1012/l 6.6 (6.2–7) 8.6 (7.7–9.4) 1.3 <0.001

Hemoglobin g/l 161 (132–176) 203 (183–223) 1.3 <0.001

Hematocrit % 42.6 (36.6–46.1) 54.2 (48–60) 1.3 <0.001

Platelets 109/l 310 (251–359) 184 (65–265) 0.6 <0.001

Neutrophils 109/l 3.3 (2.4–4.4) 3.5 (2.1–4.4) 1.1 ns

Lymphocytes 109/l 1.2 (0.8–1.9) 1.5 (0.9–2.7) 1.2 ns

Monocytes 109/l 0.3 (0.2–0.5) 0.4 (0.3–0.7) 1.3 ns

Eosinophils 109/l 0.003 (0–0.01) 0 (0–0) 0.0 <0.05

Basophils 109/l 0.01 (0–0.04) 0.001 (0–0.01) 0.2 ns

Alkaline phosphatase U/l 134 (100–174) 19.1 (13–27) 0.1 <0.001

Alanine transaminase U/l 36 (23–60) 11.4 (9–14) 0.3 <0.001

Aspartate transaminase U/l 90 (57–148) 53.1 (39–85) 0.6 <0.05

Bilirubin mM 18 (9.9–30.9) 10.6 (5–23) 0.6 0.08

Lactate dehydrogenase mkat/l 13.3 (13.3–13.3) 9.1 (7.2–11.2) 0.7 <0.001

Gamma glutamyltransferase mkat/l 0.5 (0.3–0.7) 0.3 (0.2–0.5) 0.5 <0.001

C-reactive protein mg/l 0.003 (0–0.01) 0.014 (0–0.04) 5.1 ns

Hematology analysis was performed on blood samples from brown bears during summer andwinter, andmarker enzymesweremeasured. Data show

mean and range with n = 11–15 for summer and n = 7 for winter. ns, nonsignificant.
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DNAwas isolated from bear feces and ceca of colonizedmice and 16S rRNA

profiling performed as described previously (Sommer et al., 2014) by MiSeq

sequencing.

Metabolites were analyzed by mass spectrometry as described.

Data were analyzed by Student’s t test, and the statistical p values were

further corrected for multiple testing using Benjamini Hochberg method in R

program. Data are presented as mean ± SEM.

For detailed description of all experimental procedures, see the Supple-

mental Information.
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(B) Principal coordinate analysis of the cecal mi-

crobiota of mice colonized with a bear fecal mi-

crobiota from summer or winter. 1104, 1202, 1303,

and 1304 denote bear fecal donors.

(C–E) Weight gain (C), body-fat gain (D), and

epididymal white adipose tissue (EWAT) (D) weight

were determined.

(F) Glucose metabolism was assessed via intra-

peritoneal glucose tolerance test (IPGTT).

(G) Concentrations of triglycerides in blood of mice

colonized with seasonal bear microbiota. Data are

mean ± SEM of four experiments (n = 4) with each

five animals per colonization. *p < 0.05.
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Khan, M.T., Nieuwdorp, M., and Bäckhed, F. (2014). Microbial modulation of

insulin sensitivity. Cell Metab. 20, 753–760.

LeBlanc, P.J., Obbard, M., Battersby, B.J., Felskie, A.K., Brown, L., Wright,

P.A., and Ballantyne, J.S. (2001). Correlations of plasma lipid metabolites

with hibernation and lactation in wild black bears Ursus americanus.

J. Comp. Physiol. B 171, 327–334.
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Bäckhed, F. (2014). Altered mucus glycosylation in core 1 O-glycan-deficient

mice affects microbiota composition and intestinal architecture. PLoS ONE 9,

e85254.

Sommer, F., Nookaew, I., Sommer, N., Fogelstrand, P., and Bäckhed, F.
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