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Alzheimer’s disease (AD) and Parkinson’s disease (PD) are the most common age-related 

neurodegenerative disorders and hence pose remarkable socio-economical burdens to 

both families and state. Although AD and PD have different clinical and neuropathologi-

cal features, they share common molecular mechanisms that appear to be triggered by 

multi-factorial events, such as protein aggregation, mitochondrial dysfunction, oxidative 

stress (OS), and neuroinflammation, ultimately leading to neuronal cell death. Currently, 

there are no established and validated disease-modifying strategies for either AD or 

PD. Among the various lifestyle factors that may prevent or slow age-related neurode-

generative diseases, epidemiological studies on moderate consumption of red wine, 

especially as part of a holistic Mediterranean diet, have attracted increasing interest. 

Red wine is particularly rich in specific polyphenolic compounds that appear to affect 

the biological processes of AD and PD, such as quercetin, myricetin, catechins, tannins, 

anthocyanidins, resveratrol, and ferulic acid. Indeed, there is now a consistent body of 

in vitro and in vivo data on the neuroprotective effects of red wine polyphenols (RWP) 

showing that they do not merely possess antioxidant properties, but may additionally 

act upon, in a multi-target manner, the underlying key mechanisms featuring in both AD 

and PD. Furthermore, it is important that bioavailability issues are addressed in order for 

neuroprotection to be relevant in a clinical study scenario. This review summarizes the 

current knowledge about the major classes of RWP and places into perspective their 

potential to be considered as nutraceuticals to target neuropathology in AD and PD.

Keywords: Alzheimer’s disease, Parkinson’s disease, Mediterranean diet, red wine, polyphenols, resveratrol, 

neuroprotection, bioavailability

iNTRODUCTiON

As we extend our life expectancy, population aging will inexorably increase the number of people 
afflicted by progressive and devastating neurodegenerative diseases, such as Alzheimer’s disease 
(AD) and Parkinson’s disease (PD) (1). An estimated 35 million people with AD and 10 million 
people with PD are affected worldwide (2, 3). Such impressive numbers place a heavy burden on 

Abbreviations: 6-OHDA, 6-hydroxydopamine; αS, alpha-synuclein; Aβ, amyloid-beta; AD, Alzheimer’s disease; Akt, protein 

kinase B (PKB); ARE, antioxidant response element; BBB, blood–brain barrier; ERK1/2, extracellular signal-regulated protein 

kinase; GSE/GSPE, grape seed extract/grape seed polyphenolic extract; JNK, stress activated c-Jun N-terminal kinase; MAPK, 

mitogen-activated protein kinase; MCI, mild cognitive impairment; MeDi, Mediterranean diet; NF-κB, nuclear factor kappa B; 

Nrf2, nuclear factor erythroid 2-related factor 2; OS, oxidative stress; PD, Parkinson’s disease; PI3K, phosphoinositide 3-kinase; 

ROS, reactive oxygen species; RWP, red wine polyphenols.
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FigURe 1 | Common pathological mechanisms shared by Alzheimer’s 

disease (AD) and Parkinson’s disease (PD). Although AD and PD have 

markedly different clinical and pathological features, they share common 

pathological mechanisms. Protein aggregation and deposition is a hallmark 

feature in both diseases: characteristically, amyloid plaques of amyloid-beta 

(Aβ) peptide and intracellular neurofibrillary tangles of tau protein in AD; Lewy 

bodies and Lewy neuritis of intracellular amorphous α-synuclein (αS) 

inclusions in PD. As a consequence or cause of protein aggregation, there is 

increased oxidative stress in combination with mitochondrial dysfunction 

related to excessive production of reactive oxygen and nitrogen species, and 

catalyzed by the presence of redox-active sources, such as iron overload. In 

addition, neuroinflammatory responses exacerbate the oxidative stress 

situation through the activation of aberrant cellular signaling pathways. These 

shared toxic mechanisms in AD and PD suggest that similar disease-

modifying and therapeutic strategies may be applicable.
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the individuals concerned and inflict massive costs on society for 
care and treatment, at a time of difficult economic climate (4). 
Despite many decades of research, the available drugs for AD 
and PD only attenuate symptoms and have little or no effect on 
slowing disease progression (5, 6).

Alzheimer’s disease is by far the most common cause of 
dementia. It is defined by progressive loss of short- and long-
term memory with a worsening cognitive deficit that leads to 
impaired activities of daily living (7). The consequential neuronal 
loss is preceded by two classical, histological lesions: (i) the 
extracellular accumulation of senile plaques, mainly composed 
of amyloid-beta (Aβ) peptide, and (ii) the formation of neurofi-
brillary tangles, composed of hyperphosphorylated tau proteins, 
mainly located in the cortex and hippocampus (8). On the other 
hand, PD is the most common movement disorder, its hallmark 
being a profound and selective loss of dopaminergic neurons 
in the substantia nigra pars compacta that manifests as motor 
impairment involving bradykinesia, rigidity, resting tremor, 
postural instability, and gait difficulty (9). This nerve-cell loss is 
accompanied by the presence of intraneuronal inclusions called 
Lewy bodies and Lewy neurites, both pathological hallmarks of 
PD, that consist of aggregates of a presynaptic soluble protein 
called α-synuclein (αS) (10).

Although AD and PD have different clinical and pathological 
features, the causal mechanisms at the molecular level appear 
to overlap considerably (11) (Figure  1). In both neurodegen-
erative conditions, amyloidogenic proteins (typically, Aβ and 
the microtubule-associated protein tau in AD, and αS in PD) 
misfold and self-assemble via a nucleated-growth mechanism 
to form transient, low-molecular-weight soluble oligomers, later 
converting into β-sheet-rich protofibrils and finally stabilize as 
highly ordered fibrillar structures. The shared mechanism of 
an aberrant conversion of the native, non-toxic structure of a 
protein into toxic aggregates, hence, classifies both AD and PD 
as “protein misfolding disorders” (12). Most recent research has 
established that mature amyloid fibrils are not the most toxic 
forms of amyloidogenic proteins; rather, metastable oligomeric 
intermediate structures appear to be the most cytotoxic species 
that lead to neural dysfunction (13, 14). Several pathological 
events have been associated with amyloid oligomer toxicity 
that may lead to synaptic and neuronal dysfunction, including 
membrane destabilization allowing unregulated ion transport, 
the enhanced generation of reactive oxygen species (ROS), mito-
chondrial dysfunction and fragmentation, neuroinflammation, 
endoplasmic reticulum stress, proteasome impairment, disrup-
tion of microtubular transport, and aberrant intracellular signal-
ing (15–17) (Figure  1). Furthermore, since amyloid oligomers 
are found both extracellularly and intracellularly, the capacity of 
small oligomers to cross cell membranes could explain the ability 
of protein aggregates to spread through the nervous system by 
prion-like spreading in AD and PD (18).

In recent years, there has been increasing supporting evidence 
for an association between lifestyle habits, such as diet and dietary 
components that might significantly delay the occurrence of AD 
and PD (19, 20). Particular attention has been devoted to the 
traditional Mediterranean diet (MeDi), which has been recog-
nized by the United Nations Educational Scientific and Cultural 

Organisation as an “Intangible Cultural Heritage of Humanity.” 
This dietary pattern is characterized by a high consumption of 
plant foods (i.e., vegetables, fruits, legumes, and cereals), a high 
intake of olive oil as the main source of fat, a moderate intake of fish, 
low-to-moderate intake of dairy products, and low consumption 
of meat and poultry, with wine consumed in low-to-moderate 
amounts during meals (21). In particular, neuroprotective benefit 
has been attributed to a moderate consumption of wine, more 
specifically red wine (22). Grape is one of the richest sources of 
polyphenols, with red varieties containing a substantially higher 
polyphenolic content than white (2.5 g/L in red wine vs. 0.3 g/L 
in white wine) (23).

Currently, there are no established and validated strategies for 
the prevention or delay of onset of AD/PD, even though neuro-
degeneration typically develops over a long preclinical period of 
several decades – thus raising the possibility of a long therapeutic 
time window for early intervention. In this light, the possible 
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TABle 1 | Classification, structure, and typical amounts of the major polyphenols present in red wine, compiled from Ref. (26–29).

group Subgroup Subclass Main representatives mg/l*  

“young”

mg/l*  

“aged”

Representative structure

Flavonoids Anthoxanthins Flavonols Quercetin, myricetin, kaempferol, 

laricitrin, isorhamnetin, syringetin

100 200

 Quercitin

Flavan-3-ols 

(=Flavanols)

Monomers: (+)-catechin, 

(−)-epicatechin, gallocatechin, 

epigallocatechin

Oligomers: proanthocyanidins

Polymers: condensed tannins

200

750

100

1000

 Catechin

Anthocyanidins Malvidin, cyanidin, peonidin, 

delphinidin, pelargonidin, 

petunidin

400 90

 Malvidin 

Non-flavonoids Phenolic acids Hydroxybenzoic 

acids

Gallic, ellagic, 

parahydroxybenzoic, 

protocatechuic, vanillic, syringic 

acids

Hydrolyzable tannins: polymers 

of gallic and ellagic acids; 

castalagin, vescalagin

60

0

60

250

 Gallic acid

Hydroxycinnamic 

acids 

Caffeic, coumaric, ferulic, sinapic 

acids

165 60

 Caffeic acid

Stilbenes Resveratrol, piceid, astringin, 

piceatannol, ε-viniferin, pallidol, 

hopeaphenol

7 7

 Resveratrol 

*Nominal amounts for wine made from Vitis vinifera, the European wine grape. “Young” means wine less than 6 months of age and not having been aged or fermented in oak barrels. 

“Aged” implies wine about 2 years old with some oak barrel aging (or other oak contact).
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preventive and therapeutic benefits of red wine polyphenols 
(RWP) are highly relevant as they display the capacity to protect 
neurons which goes beyond their characteristic antioxidant prop-
erties. This review attempts to highlight the diverse neuroprotec-
tive abilities of phenolic compounds found in red wine that are 
relevant to the common mechanisms shared between AD and PD.

PHeNOliC COMPONeNTS iN ReD wiNe

Natural polyphenols represent a diverse and abundant class of 
plant secondary metabolites found in herbal beverages and food, 
with no less than 8,000 phenolic structures having been identi-
fied in plants. Polyphenols are broadly classified according to 
the number of phenol rings and the chemical groups attached 
to the rings; they generally feature two aromatic rings connected 
via a three-carbon bridge (2-phenyl-1,4-benzopyrone) with each 
ring containing at least one hydroxyl group (24). Simple phenols 

include those compounds that have a single aromatic ring con-
taining one or more hydroxyl groups, while the more common 
polyphenolic compounds are those that have multiple phenol 
rings within their structure. Phenols can be divided into two main 
groups, the flavonoids and the non-flavonoids. Flavonoid intake 
varies depending on the type and amount of fruit, vegetables, or 
beverages consumed, but averages around 1–2  g per day (25). 
Indicative levels of specific polyphenols in red wine are shown 
in Table 1.

Over 500 compounds have been identified in wines, with 
polyphenols representing the most abundant class of biologi-
cally active phytonutrients (30). Polyphenols also influence the 
taste, astringency, aroma, and the color of wine (31, 32). Grape 
phenolics are distributed in the skin, stem, leaf, and seed of the 
grape fruit, with 60–70% of the total being stored in the grape 
seed (33). Specifically, phenolic acids are largely present in the 
pulp, anthocyanins, and stilbenoids in the skin, while catechins, 
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FigURe 2 | Key stages in red wine production. (A) Viticulture: the cultivation of grapevines; variety is affected by climate of the vineyard’s region, drainage 

around the vines, humidity of the region, sun exposure, and soil quality; (B) Harvesting: grapes are harvested when ripe as determined by taste, level of sugars and 

acid, or weather forecasts; (C) Stemming and Crushing: stemming removes the stems from the grape bunches, and crushing involves squeezing the broken grapes 

so that they are exposed to yeast for fermenting; (D) Fermentation and Maceration: added yeast (inoculation) will turn the sugar in wine into carbon dioxide and 

ethanol; this process can take from 10 to 30 days; maceration is the time given for phenolic components of the grape (such as tannins, anthocyanins) to be leached 

from the grape skins, seeds, and stems into the “must” (i.e., grape juice and solids); (e) Draining: the juice portion of the “must” is drained without being pressed 

into barrels (free-run wine); (F) Pressing: the remaining pulp (pomace – containing the skins, pulp, seeds) is pressed to squeeze out the press wine; (g) Mixing: the 

free-run wine and press wine, always from the same source, are mixed together in appropriate ratios to obtain the desired red wine; (H) Clarification and 

Stabilisation: processes by which insoluble matter suspended in the wine, such as dead yeast and grape skins, is removed before bottling; this may involve filtration, 

centrifugation, flotation, refrigeration, pasteurization, and/or barrel maturation and racking; (i) Aging: the clarified wine is transferred into either wooden barrels or 

metal vats, where the wine is allowed to further mature and develop flavors. If a winemaker chooses to age the wine in wooden casks, he will be allowing the wine 

to pick up tannins from the wood, adding greater depth to its flavors; (J) Bottling: done carefully so that the wine does not come in contact with air. A dose of sulfite 

is added to help preserve the wine and prevent unwanted fermentation in the bottle. Finer wines may be stored for several years in bottles before they are released.
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proanthocyanidins, and flavonols are found in both the skin 
and seeds (34). The qualitative and quantitative polyphenolic 
content in red wine depends on numerous factors along the 
wine-making process, such as (i) environmental factors in 
the vineyards, e.g., climate, soil, and exposure to fungal infec-
tions; (ii) grape varieties and maturity; (iii) pre-fermentative 
practices, such as addition of sulfur dioxide (SO2) and ascorbic 
acid (Vitamin C) before grape crushing; (iv) fermenting and 
aging conditions; and (v) other technological practices, such as 
ionic exchange, filtration, centrifugation, and cold stabilization 
(35–37) (Figure  2). Of particular importance is the fact that, 
during wine clarification, there is a decrease in the content 
of extractive and volatile compounds, which often translates 
into a significant interference in the content of polyphenols 
(38). Furthermore, during wine aging simple phenols present 
in wine are transformed into complex molecules derived from 
the condensation of catechins, anthocyanins, and proantho-
cyanidins. This results in the formation of new pigments and 
modification of wine color. Finally, the process of oak aging 
can add other phenols to the wine, most notably vanillin and 
hydrolyzable tannins (39). Tannins present in oaks come from 
lignin structures in the wood and help protect the wine from 
oxidation (35). Indeed, the exposure of red wine to oxygen has 
been established to have a strong impact on phenolic content 
(40). Thus, the phenolic content ultimately present in a glass 
of red wine is rather different from that of the non-harvested 
grapes. Generally, the chemical composition of the final prod-
uct is much more complex than the raw material due to the 

formation of a variety of new polyphenolic compounds by the 
processes referred to above (41).

The predominant sources of phenols in red wine are flavo-
noids, with catechins usually the major flavanol group (26, 27, 29) 
(Table  1). The catechin levels in red wine are typically in the 
range of 20–100 mg/L, but may even rise to 1000 mg/L in old, red 
wines (42). The condensation of either catechin or epicatechin 
induces the formation of oligomers (proanthocyanidins) and 
polymers (condensed tannins) (28). Quercetin, myricetin, and 
kaempferol are found in glycoside forms and constitute the major 
flavonols in red wine (34). The quantity of such polyphenols 
varies from trace amounts up to 200 mg/L in select red wines 
(26). The glycosides of anthocyanidins are called anthocyanins, 
which typically form complex molecules with other phenolic 
molecules and contribute to the color and the aging of wine (43). 
Anthocyanins are only found in red wine, and include malvidin, 
cyanidin, delphinidin, peonidin, and petunidin, with malvidin 
being the most abundant (27).

Non-flavanoids in red wine, which include phenolic acids, 
hydrolyzable tannins, and stilbenes, are present in smaller 
quantities (Table  1). The hydroxybenzoic acids are present in 
their free forms and are less abundant than the hydroxycin-
namates. The latter are the main class of non-flavonoid phenols 
in grape vine and are found as esters with tartaric acid (27, 29). 
The three most important hydroxycinnamates in red wine are 
caffeic, coumaric, and ferulic acids with typical values of 60 mg/L 
in aged wine (26). Hydrolyzable tannins arise during matura-
tion and aging of wines in oak barrels where ellagic and gallic 
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acids are the precursors (44). Castalagin and vescalagin are the 
main representative compounds of hydrolyzable tannins. Their 
levels in red wine are about 250 mg/L after the wine has aged in 
oak barrels for two or more years (45). Finally, stilbenes in red 
wine are represented by resveratrol, which can also be found in 
oligomeric and polymeric forms (ε-viniferins and δ-viniferins) 
(46, 47). The content of resveratrol in different red wines was 
reported to range from undetectable to 15 mg/L, with a mean 
value of 7 mg/L (48).

The highly complex phenolic composition of both grapes and 
red wine inform on the need to obtain a better polyphenolic qual-
ity control of the final red wine product. Variations in the balance 
and composition of RWP are translated into manifold physi-
ological responses in biological systems. Hence, the knowledge 
acquired through novel technological and chemical approaches 
for enhancing the polyphenolic component of red wine during 
the wine-making process can have a positive and consistent 
impact on human health.

ePiDeMiOlOgiCAl STUDieS ON 
ReD wiNe

One potential area of benefit of MeDi is that of cognitive health 
(49, 50). Overall, studies appear to suggest that higher adherence 
to the MeDi is associated with a reduced risk of developing mild 
cognitive impairment (MCI) and AD, and a reduced risk of 
progressing from MCI to AD (51–53). Analysis of pooled results 
from five studies, examining MeDi with a follow-up of at least 
1 year, revealed that individuals in the highest MeDi score tertile 
had a 33% less risk of MCI or AD when compared to the lowest 
MeDi tertile. Nonetheless, more prospective-cohort studies and 
randomized controlled trials are needed to further strengthen 
this evidence (54). With regards to alcohol drinking, light-to-
moderate drinking (one to three drinks per day) was significantly 
associated with a lower risk of any dementia (HR 0.58; 95% CI, 
0.38–0.90) and vascular dementia (HR 0.29; 95% CI, 0.09–0.93) 
in individuals aged 55  years and over (55). In a similar vein, 
there were lowest odds for dementia among older adults whose 
weekly alcohol consumption was one to six drinks every week 
(OR 0.46; 95% CI, 0.27–0.77), regardless of the type of bever-
age consumed, when compared to abstainers (56). Specifically 
addressing the role of red wine, an inverse association between 
moderate wine drinking and incident dementia in the elderly has 
long been proposed (57). This has been supported by a cohort 
study (Copenhagen City Heart Study) among individuals aged 
65 years and older, in which it was found that monthly or weekly 
intake of wine, but not other alcoholic drinks, was associated with 
a lower risk of dementia including AD; suggesting that certain 
substances in wine may reduce the occurrence of dementia (58). 
An oft-cited study in which the volume of red wine intake has 
been recorded is a 3-year prospective study performed in a cohort 
of 3,777 community residents aged 65 and over. Moderate drink-
ing of three to four glasses per day (or 250–500 mL/day) of red 
wine was associated with a fourfold diminished risk of AD and 
incident dementia when compared to those who drank less, or 
did not drink at all (57). Despite an overall positive association 
of red wine consumption with better cognitive health, whether 

people should start drinking or increase wine consumption to 
avoid dementia is still debatable. Larger, prospective-cohort stud-
ies with a longer follow-up and further randomized controlled 
trials are warranted.

Concerning PD, a habitual dietary intake of flavonoids has 
been found to be protective against PD risk. More specifically, 
male participants in the highest quintile of total flavonoid 
intake had a 40% lower PD risk than those in the lowest 
quintile (HR 0.6; 95% CI, 0.43–0.83). Intakes of anthocyanins 
from flavonoid-rich foods, including red wine, were especially 
associated with the lower PD risk (59). Considering MeDi and 
Parkinson’s risk, a reduced odds for PD age at onset (OR 0.86; 
95% CI, 0.77–0.97) was associated with a higher MeDi score; 
while lower MeDi diet adherence was associated with earlier 
PD (60). On the other hand, most epidemiological studies to 
date do not support an association between alcohol or wine 
consumption and risk of PD (61, 62).

To conclude, it is still premature, on the currently available 
epidemiological data, to be able to advise all elderly people 
to drink wine regularly for the prevention of age-related 
neurodegeneration. Moreover, any public health message 
concerning regular wine intake also has to address the risk-
to-benefit ratio associated with excessive ethanol consump-
tion present in wine, which may lead to adverse outcomes of 
intoxication, hypertension, cardiomyopathy, stroke, and oral 
cancer (63,  64). Ultimately, the epidemiological analysis of 
the relations between wine consumption and mental decline 
is complex, and it is highly unlikely that a single component 
plays a major role (65). General limitations in epidemiological 
studies assessing the role of red wine and red wine components 
in neurodegenerative disease include: (i) the assumption that 
wine intake will remain unchanged over the time period of 
the study; (ii) confounders such as other components of the 
diet (e.g., tea) which may contribute to the total amount of 
polyphenols consumed; (iii)  variability in the content and 
composition profile of RWP (as discussed above); and (iv) 
the lack of reliable diagnostic tools for AD and PD (66). 
Nevertheless, although challenging, epidemiological research 
is indispensable to support the need for intervention trials 
designed to test the epidemiological associations between red 
wine and age-related neurodegeneration. Moreover, a better 
scientific understanding of the role of specific dietary poly-
phenolic components in red wine that are capable of exerting 
beneficial disease-modifying activities, and their mechanisms 
of action, may point the way toward therapeutic application of 
select red wine phenols in AD and PD.

NeUROPROTeCTive eFFeCTS OF ReD 
wiNe POlYPHeNOlS iN AD AND PD

Much effort has been undertaken in the way of understanding the 
neuroprotective effects of polyphenols, using both in  vitro and 
in vivo models (67). Broadly speaking, the molecular mechanisms 
of their neuroprotective actions can be classified as: (i) anti-
inflammatory activities and antioxidant capacity, including free 
radical scavenging and metal chelation; (ii) modulation of cell 
signaling pathways; and (iii) anti-amyloid action through direct 
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binding with specific amyloidogenic proteins such as Aβ, αS, and 
tau. Such a wide mode of action highlights a key aspect that has 
repeatedly emerged from studies on natural polyphenols, includ-
ing wine polyphenols – namely that they exhibit a remarkable 
ability to simultaneously and synergistically modulate multiple 
molecular targets, suggesting a greater potential for therapeutic 
efficacy in the complex pathogenesis of AD and PD (22, 68). Thus, 
in this section, we summarize in vitro and in vivo neuroprotec-
tive effects of RWP in relation to the shared pathological features 
involved in AD and PD. Experimental findings on neuroprotec-
tive mechanisms will later be discussed in light of recent bioavail-
ability and clinical studies aimed at therapeutic use of red wine 
polyphenols.

Red wine Polyphenols Reduce Oxidative 
Stress through Direct Antioxidant and 
iron-Chelating Activity
The central nervous system is highly susceptible to oxidative 
stress (OS), mainly due to its high oxygen consumption and 
metabolic activity (69). Other reasons for the selective neuronal 
variability to OS include the presence of elevated amounts of 
redox-active metals, such as zinc, copper, and iron, and the 
enrichment of neuronal membranes with long-chain polyun-
saturated fatty acids which are extremely sensitive to oxidation 
(69, 70). Because of this, OS has been majorly implicated in the 
pathogenesis of neurodegenerative diseases and, hence, direct 
antioxidant and metal-complexing properties of RWP may be of 
significance (71).

The oft-described antioxidant activity of red wine is explained 
mostly by its polyphenol content. A plethora of in vitro studies 
have described the potent free radical scavenging effects of RWP, 
including direct scavenging of reactive oxygen and nitrogen 
species, such as peroxides, superoxide, the hydroxyl radical, 
and the peroxynitrite anion, as well as sequestering of highly 
redox-active metal ions (72). For instance, major antioxidant 
polyphenols found in Merlon wine extract included quercetin, 
catechin, epicatechin, tyrosol, gallic acid, and procyanidins, with 
quercetin and procyanidins being the most active antioxidants. 
Pretreatment of neuronal and astrocytic cell lines under OS 
conditions with these polyphenolic compounds suppressed ROS 
production and significantly improved cell viability (73, 74). 
Another important wine polyphenol, resveratrol, was cytopro-
tective in human neuroblastoma cells exposed to Aβ or to Aβ-
metal complexes via its scavenging properties (75). In a similar 
manner, anthocyanins, ferulic acid and other hydroxycinnamic 
acids, variously protected against protein oxidation and lipid 
peroxidation in solution, in neuronal cell lines, and in synap-
tosomal systems exposed to reactive nitrosative species, both 
at membrane and cytosolic levels (76–78). Lipid nanoparticles 
entrapping ferulic acid reduced lipid peroxidation of rat brain 
microsomes; such new formulations could promote uptake of 
ferulic acid by cells because of their lipid-based structure (79). 
Pretreatment of cortical neurons with quercetin, caffeic acid, 
and metabolic derivatives of catechin and epicatechin protected 
against injury by OS-induced, highly neurotoxic catecholamine-
quinones and cysteinyl-catecholamine conjugates (e.g., 2-S- and 

5-S-cysteinyl-dopamine) that are thought to be relevant to the 
etiology of PD (80). A novel approach to antioxidant therapy 
includes the development of protective compounds targeted 
to mitochondria. Apart from representing the major site of 
superoxide-generation within neurons, mitochondria are also 
a major target for the oxidative action of ROS. Consistent 
evidence suggests that mitochondrial dysfunction is central 
to the early events in the pathogenesis of AD and PD (81, 82). 
In PD, therapy with L-DOPA itself may give rise to additional 
oxidative/nitrosative stress targeting mitochondria in dopamin-
ergic neurons, as evidenced in rats. In the substantia nigra and 
striatum of rats administered L-DOPA, there was an increase 
in oxidized glutathione and inducible nitric oxide synthase 
(iNOS) upregulation that was accompanied by induction of the 
cytoprotective heat shock protein (Hsp) 70 and the mitochon-
drial chaperone Hsp60 aimed at re-establishing mitochondrial 
homeostasis (83). Several individual polyphenols present in 
wine have been demonstrated in in vitro studies to exert prom-
ising mitochondrial protection. These include anthocyanidins 
and proanthocyanidins, quercetin, and resveratrol [reviewed in 
Fernandez-Moriano et al. (84)].

It should be emphasized at this point that when considering the 
final antioxidant effect of red wine, possible synergistic/additive/
antagonistic effects among the various polyphenol compounds 
in the mixture should be taken into account. In fact, a study on 
the interaction of three RWP – quercetin, resveratrol, and caffeic 
acid – in combination revealed markedly different antioxidant/
scavenging potencies of the compounds when compared to the 
activity of individual polyphenols alone (85).

In vitro findings have driven further research on the antioxi-
dant effects of RWP in animal models. Resveratrol administra-
tion, both intravenously or as a dietary supplement, significantly 
protected mice from motor co-ordination impairment induced 
by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), a 
parkinsonian neurotoxin. Furthermore, resveratrol protected 
against hydroxyl radical overloading of striatal neurons and 
prevented depletion of striatal dopamine (86, 87). In a rat model 
of PD induced by intrastriatal injection of another OS-generating 
neurotoxin, 6-hydroxydopamine (6-OHDA), resveratrol upregu-
lated antioxidant enzyme activity and improved antioxidant status 
while lowering dopamine loss (88). In vivo supplementation of 
grape seed extract (GSE) enriched in proanthocyanidins to aged 
rats (100 mg/kg body weight for 30 days) inhibited the accumula-
tion of oxidative DNA damage and normalized lipid peroxidation 
and antioxidant defenses (89, 90). In humans, drinking 300 ml of 
red wine every day for a week (mild-to-moderate consumption) 
improved the profile of antioxidant enzyme expression and activ-
ity in blood (91).

Generally, in vivo work has shown that although the antioxi-
dant properties of wine have been largely attributed to the ROS-
scavenging ability of constituent phenolics, direct scavenging is 
limited in situ in the brain and, therefore, unlikely to be the main 
mechanism of action. Rather, other indirect mechanisms for 
their neuroprotective effects are most probably exerted through 
influences on the intracellular redox status, such as (i) inhibition 
of redox-sensitive transcription factors, e.g., nuclear factor-κB  
(Nf2) and activator protein-1 (AP-1); (ii) upregulation of 
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TABle 2 | Neuroprotective signal transduction by major red wine polyphenols and their metabolites.

RwP Stimulation (+) 

inhibition (−)

Signaling  

pathway/s

Neuroprotection Reference

Resveratrol,  

(−)epicatechin

+ Nrf2/HO-1/ARE Attenuate OS and neuroinflammation through the 

expression of protective enzymes and scavengers

Shah et al. (95); Ren et al. (96)

Resveratrol, ferulic acid,  

epicatechin, quercetin,  

O-methylated quercetin

+ MAPK/ERK1/2 Neuronal growth factor-induced mitogenesis, 

differentiation; anti- apoptotic; enhanced 

neuronal survival and plasticity

Dasgupta and Milbrandt (97); Zhang et al. 

(98); Zeni et al. (99); Schroeter et al. (100); 

Schroeter et al. (101); Spencer et al. (102)

− MAPK/JNK

Kaempferol, resveratrol,  

pterostilbene, quercetin

− NF-κB Inhibit neuroinflammation; suppress oxidative 

damage

Capiralla et al. (103); Zhang et al. (104); 

Jin et al. (105); Chang et al. (106)

Resveratrol, quercetin,  

O-methylated quercetin

− PI3K/Akt Increased neuronal survival and plasticity; 

inhibition of mitochondrial-mediated apoptosis

Spencer et al. (102); Simao et al. (107)

Activation of signaling pathways is shown as (+), while downregulation of signaling pathways is shown as (−).

ARE, antioxidant response element; Akt, protein kinase B (PKB); ERK, extracellular signal-regulated protein kinase; HO-1, Heme oxygenase-1; JNK, c-Jun N-terminal kinase; MAPK, 

mitogen-activated protein kinase; NFκB, nuclear factor kappa B; Nrf2, nuclear factor erythroid 2-related factor 2; PI3K, phosphatidylinositol-3 kinase.
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antioxidant enzymes, e.g., glutathione S-transferases and super-
oxide dismutases; and (iii) inhibition of pro-oxidant enzymes, 
e.g., nitric oxide synthase, xanthine oxidase, cyclooxygenases, 
and lipoxygenases (92).

Red wine Polyphenols Modulate 
Signaling Pathways
It has become evident that RWP and their corresponding in vivo 
metabolites elicit their neuroprotective effects not by simply 
acting as antioxidants, but rather by interacting with various 
signaling cascades involved in adaptive stress responses (93). 
Selective inhibitory or stimulatory actions of RWP on neuronal 
and glial kinase signaling cascades have been studied, including 
(i) phosphoinositide 3-kinase (PI3K)/protein kinase B (Akt); 
(ii) mitogen-activated protein kinase (MAPK) and extracellular 
signal-regulated protein kinase (ERK1/2); (iii) nuclear factor 
erythroid 2-related factor 2 (Nrf2); and (iv) nuclear factor kappa 
B (NFkB) (93). Inhibition or stimulation of these pathways by 
RWP is likely to profoundly affect cellular function by altering the 
phosphorylation state of target molecules and/or by modulating 
gene expression (94). Such actions will be highlighted in relation 
to the pathogenesis of AD and PD (Table 2).

The best-characterized MAPK pathways are the mitogenic 
ERK and the stress activated c-Jun N-terminal kinase (JNK) 
signaling pathways (94). The potential modulation of MAPK 
signaling by RWP is significant, as ERK1/2 and JNK are involved 
in neuronal growth factor-induced mitogenesis, differentiation, 
apoptosis, and neuronal plasticity (108). Investigations have 
indicated that individual RWP and/or their metabolites may 
interact selectively within the MAPK signaling pathways (109). 
For example, through the activation of ERK1/2, resveratrol 
and ferulic acid significantly enhance mammalian neurotro-
phins, such as nerve growth factor (NGF) and brain-derived 
neurotrophic factor (BDNF) in neuronal cell lines (97–99). 
Modulation of neurotrophin signaling is crucial to support 
neuronal survival and maintain synaptic plasticity, hence, might 
provide a therapeutic strategy in AD and PD (110). Interestingly, 
the ability of resveratrol to protect hippocampal cells against Aβ-
induced toxicity correlated strongly with its affinity to “receptor” 

binding sites at the level of the cellular plasmalemma in rat brain 
(111). Epicatechin and one of its major in vivo metabolites, 3′-O–
methyl-(−)-epicatechin, stimulated phosphorylation of ERK1/2 
at physiologically relevant concentrations thereby protecting 
neurons against OS-induced apoptosis via a mechanism involv-
ing the suppression of JNK (100, 101). On the other hand, neither 
quercetin nor its O-methylated metabolites had a measurable 
effect on JNK phosphorylation (102).

In addition to MAPK pathways, RWP have been identified to 
modulate signaling through Akt, one of the main downstream 
effectors of the PI3K pathway, and a pivotal kinase in controlling 
neuronal survival and apoptosis. For instance, resveratrol given 
by intraperitoneal administration to rats has been reported to 
protect against ischemic neuronal cell death in the CA1 hip-
pocampus, via downregulation of glycogen synthase kinase 3 
(GSK-3β) and cAMP response element-binding protein (CREB) 
protein expression, through activation of PI3K/Akt signaling 
(107). On the other hand, quercetin is neurotoxic in primary cor-
tical neurons by potent inhibition of survival signaling through 
PI3K/Akt (102). Indeed, it should be noted that interactions 
between intracellular signaling cascades and RWP could have 
unpredictable outcomes depending on the polyphenol combina-
tion, concentrations used, and cell type.

The MAPK, ERK, and PI3K/Akt pathways can all activate 
nuclear factor E2-related factor 2 (Nrf2) signaling, which path-
way coordinates the enhanced expression of a large number of 
prosurvival genes that allows neurons to respond to various 
conditions of stress, including OS (112). In particular, the Nrf2-
antioxidant response element (ARE) pathway leads to the 
downstream expression of several enzymes with antioxidant and 
detoxification capacities. Not surprisingly, therefore, given the 
importance of OS and neuroinflammation, plenty of evidence 
highlights the neuroprotective roles of the Nrf2–ARE pathway in 
AD and PD (113). Many studies clearly demonstrate that dietary 
polyphenols strongly induce the Nrf2–ARE pathway in neurons 
and astrocytes, and this mechanism could prevent cognitive 
decline and neurodegeneration (114). One of the enzymes that 
is under the control of ARE in brain cells is heme oxygenase 
1 (HO-1), an enzyme degrading heme to carbon monoxide, 
free iron, and biliverdin (115). Thus, among wine-phenolic 
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components, ferulic acid exerted neurprotection by increasing 
HO-1 activity in a human neuroblastoma cell line (116), while 
resveratrol and epicatechin pretreatment protected against focal 
cerebral ischemia in rats and mice, respectively, by upregulating 
expression of Nrf2 and activation of HO-1 to ameliorate oxidative 
damage (95, 96). In a rat model of AD induced by inoculation of 
the Aβ peptide, resveratrol administration increased expression 
of HO-1 and reduced lipid peroxidation, thus improving spatial 
memory (117).

Another cardinal transcriptional regulator of inflamma-
tion and apoptosis is NF-κB; upregulation of NF-κB leads to 
increased inflammatory signaling (118). Chronic neuroinflam-
matory processes mediated by NF-κB significantly contribute 
to the initiation and progression of neuronal damage observed 
in AD and PD, thus making selective targeting of NF-κB an 
attractive therapeutic strategy (119, 120). Polyphenols, includ-
ing those found in red wine, readily attenuate NF-κB activation 
by targeting multiple inflammatory cascades, such as MAPK/
ERK1/2, PI3K/Akt/JNK, and others (121, 122). Considering res-
veratrol, studies in cell cultures showed that by preferentialling 
inhibiting NF-κB activation, it prevented the pro-inflammatory 
effect of fibrillar Aβ peptides on microglia. Consistent with this 
effect, orally administered resveratrol lowered microglial activa-
tion in a mouse model of cerebral amyloid deposition (103). 
In a PD model of rat primary midbrain neuron–glia cultures, 
resveratrol also exhibited neuroprotective effects through 
inhibition of microglial activation and subsequent decrease in 
pro-inflammatory factor release. These effects were related to 
downregulation of MAPK and NF-κB pathways in microglia 
(123). In vivo, resveratrol given orally for 10  weeks reduced 
neural inflammation in a 6-OHDA-induced PD in rats (105). 
In a similar PD model in zebrafish, another major polyphenol 
found in red wine, quercetin, prevented 6-OHDA-stimulated 
dopaminergic neuron loss by reduction of pro-inflammatory 
gene expression (104). Interestingly, the oral administration of 
an extract containing resveratrol to healthy subjects for 6 weeks 
was reported to have a comprehensive suppressive effect on OS 
and inflammatory indices with a decrease in NF-κB binding 
(124). Recently, pterostilbene, a derivative of resveratrol which 
is more lipophilic, exhibited stronger modulation of neuroin-
flammation than the parent compound in a mouse model of 
accelerated aging (106).

As such, therefore, phenolic constituents of red wine represent 
potent small-molecules capable of countering OS and neuro-
inflammation in neurodegenerative disease. Such regulation 
appears to be mediated by attenuation of microglial activation 
and associated actions on diverse intracellular signaling path-
ways, including the MAPK cascade and NF-κB pathway. Perhaps 
further work should be conducted to elucidate the consequences 
of the interactions or the synergistic effects between different 
RWP on their myriad intracellular targets (121).

Red wine Polyphenols Antagonize 
Formation of Toxic Amyloid Aggregates
As previously mentioned, another pathological hallmark shared 
by both AD and PD is the misfolding and aberrant self-association 

of amyloidogenic proteins (e.g., Aβ, αS, and tau) into neurotoxic 
higher-order aggregates (12). Especially toxic are the lower 
molecular weight, soluble protein oligomers that play a key 
role in the functional impairment and death of neurons (125). 
Lately, further overlap between AD and PD at the molecular level 
is being revealed by a direct interaction of tau with αS; the two 
amyloidogenic proteins catalyze the polymerization of each other, 
triggering the formation of toxic tau/αS co-oligomers, which 
eventually leads to deposition of the co-aggregates (126). These 
common aggregation processes imply that preventing the accu-
mulation of toxic oligomeric species in the brain might provide 
a useful therapeutic approach (127). In fact, select polyphenols 
found in red wine possess robust anti-amyloidogenic properties 
(128). Small-molecule polyphenolic compounds may alter the 
aggregation pathways by a number of different mechanisms: (i) 
stabilize the “benign” native form of amyloidogenic proteins; (ii) 
block the early assembly processes in the aggregation pathway, 
preventing the formation of toxic oligomers; (iii) inhibit fibril 
growth and extension; (iv) disassemble preformed fibrils into 
non-toxic confomers; and (v) inhibit amyloid–membrane inter-
actions (129–132).

In a study carried out on 39 different flavonoids, wine-related 
polyphenolic compounds, especially quercetin, exhibited strong 
inhibitory effects against Aβ fibril formation in vitro (133). On the 
other hand, ferulic acid did not prevent fibril formation, although 
it modified the length of Aβ fibrils and still protected against Aβ 
toxicity in transgenic Caenorhabditis elegans (134). Quercetin 
also displayed fibril-destabilizing effects on preformed fibrillar 
Aβ and reversed Aβ-induced neurotoxicity in a cell system over-
expressing APP Swedish mutation (APPswe), which is associated 
with early-onset familial AD (135). The polyphenol metabolite 
quercetin-3-O-glucuronide is also capable of interfering with 
the formation of neurotoxic oligomeric Aβ species. Interestingly, 
this quercetin metabolite was found to accumulate in rat brain 
following oral dosage with Cabernet Sauvignon red wine, and 
improved AD-type deficits in long-term potentiation by promot-
ing neuroplasticity processes (136). In line with these findings, it 
has been demonstrated that consumption of wine obtained from 
Cabernet Sauvignon grapes by transgenic Tg2576 mice (which 
model AD-type amyloid-β neuropathology) significantly sup-
pressed AD phenotypes by preventing toxic Aβ peptide genera-
tion (137). Another wine, muscadine wine, suppressed memory 
deterioration in the same transgenic AD mice by interfering 
with the oligomerization process of Aβ (138). The mechanism of 
action of resveratrol involves direct binding to Aβ, interference 
with Aβ aggregation and formation of “off-pathway” Aβ oligom-
ers that have reduced cytotoxicity (139). Of relevance to the 
in vivo situation, resveratrol and its derivatives identified in wine, 
such as piceid and ε-viniferin glucoside (a resveratrol dimer) 
strongly inhibited fibrillization of Aβ peptide and protected PC12 
cells against Aβ-induced toxicity (140). Another wine-related 
polyphenol, ellagic acid, attenuated Aβ-induced neurotoxicity in 
cell culture by accelerating fibril formation and simultaneously 
causing a significant reduction in toxic intermediate oligomeric 
species (141).

A number of studies to investigate the protective effects of 
red wine have made use of a commercially available grape seed 
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polyphenolic extract (GSPE) that is rich in gallic acid, catechins, 
and proanthocyanidins. GSPE significantly inhibited Aβ aggre-
gation in vitro and when administered orally in a mouse model 
of AD it reduced Aβ plaques and attenuated AD-type cognitive 
deterioration (142, 143). From a structural-activity analysis of 
GSPE compounds, it was concluded that the most effective Aβ 
aggregation inhibitors were in fact the polyphenol oligomers 
present in the GSPE mixture (144). Moreover, anti-aggregation 
properties of GSPE were observed in the inhibition of tau 
peptide aggregation, as well as the dissociation of preformed tau 
aggregates, possibly through non-covalent interactions of GSPE-
derived polyphenols with tau residues (145). GSPE was also 
effective in the in vivo scenario, such that GSPE delivered through 
drinking water significantly reduced levels of toxic hyperphos-
porylated tau and improved motor phenotype of transgenic mice 
expressing a human tau protein containing the P301L mutation 
(146). Another extract related to red wine components, known 
as BDPP (Bioactive Dietary Polyphenol Preparation – consist-
ing of a mixture of Concord grape juice, GSE, and resveratrol) 
mitigated amyloid load, loss of synaptic plasticity, and cognitive 
impairment in mouse models of AD. Significantly, as has been 
observed elsewhere in this review, combinatory treatment with 
the extract preparation was much more effective than treatment 
with the individual polyphenols alone (68). Fewer studies have 
made use of wine extracts, or a combination of wine-related 
constituents, in relation to models of PD. One example is a 
grape extract (Regrapex-R®) prepared from whole grape (Vitis 
vinifera) fed to transgenic Drosophila expressing human αS (a 
fly model of PD), which resulted in a significant improvement 
in climbing ability compared to controls (147). Aggregation 
of αS in the brain has been implicated as a critical step in the 
development of PD and related synucleinopathies. Therefore, 
components of red wine, which hinder αS aggregation, may 
prove effective as disease-modifying drugs in PD. Wine-related 
polyphenols that reportedly inhibited the formation of fibrillar 
αS, and destabilized preformed fibrillar αS in a dose-dependent 
manner include: tannic acid = myricetin > kaempferol = feru-
lic acid  >  catechin  =  epicatechin (148). The two most potent 
RWP, tannic acid and myricetin, also displayed strong inhibi-
tion of αS oligomer formation and disaggregated preformed 
oligomers in vitro (149). A detailed investigation revealed that 
myricetin inhibited αS oligomerization by directly binding to the 
N-terminal region of αS (150). More recently, quercetin was also 
shown to covalently bind αS, with the increased hydrophilicity 
of the covalently modified αS accounting for the inhibition of 
aggregation (151).

MeTABOliSM AND BiOAvAilABiliTY 
OF ReD wiNe POlYPHeNOlS

Whether the multiple biological activities of RWP described 
above translate into actual pharmacological effects in  vivo 
depends very much on their bioaccessibility and systemic 
bioavailability. Bioaccessibility is defined as the amount of an 
ingested compound that is present in the gut as a consequence 
of release of this constituent from the solid food matrix, whereas 
bioavailability is the proportion that is absorbed, metabolized 

and available to exert its biological effects at the target tissue 
(42,  152). Although the typical modifications that occur dur-
ing and after absorption of several common polyphenols are 
reasonably well understood, the bioavailability of polyphenols is 
determined by interplay of absorptive and metabolic pathways 
(Figure  3). Indeed, unraveling the bioavailability of natural 
polyphenols is more challenging than with synthetic compounds 
(153), not least because resident gut microbiota generate second-
ary metabolites (154). This typically involves deglycosylation, 
followed by breakdown of ring structures to produce phenolic 
acids and aldehydes. After absorption, metabolites can be 
glucuronidated, sulfated, and/or methylated and are detected in 
bloodstream, urine, and fecal samples (155, 156).

Notwithstanding the complex metabolic fate of polyphenols, it 
is well acknowledged that RWP may delay pathological processes 
leading to AD/PD by accumulating in the brain of mouse and 
rodent models. For example, major GSPE components, such as 
gallic acid, catechin, epicatechin, and their metabolically derivat-
ized forms, were identified in the plasma of rats following acute 
gavage with GSPE; however, only repeated dosing resulted in 
brain deposition of metabolites (157). An epicatechin metabo-
lite, 3′-O-methyl-epicatechin-5-O-β-glucuronide accumulated 
in the hippocampus after oral administration of GSPE, where it 
promoted basal mechanisms related to learning and memory at 
physiologically relevant concentrations (158). Rapid absorption of 
catechin and epicatechin into plasma was shown in orally admin-
istered rats, with plasma concentrations peaking at 2–3 h after 
ingestion (159). In human volunteers, metabolites of catechin and 
epicatechin, mainly glucuronides and methyl glucuronides, were 
detected in plasma only after regular red wine drinking (~375 ml 
of red wine daily for 2 weeks) (160). Long-term feeding of rats 
with quercetin diet also resulted in deposition of quercetin and 
its metabolites in rat brain (161). Therefore, it appears that the 
maintenance of a high plasma concentration of polyphenols and 
their metabolites in living organisms requires repeated ingestion 
over time.

Oral bioavailability data on resveratrol indicate extensive 
metabolism and generally poor bioavailability (162). Nevertheless, 
a growing number of studies describe bioactivity of resveratrol 
in vivo, implying that resveratrol does exert protective effects in 
animal models of disease (163, 164). In this respect, it is believed 
that accumulation of biologically active resveratrol metabolites 
may mediate the neuroprotective effects. In humans, too, res-
veratrol glucuronides, rather than free resveratrol, was detected 
in plasma after moderate consumption of red wine (165). Such a 
scenario would explain why dietary supplementation with clini-
cally feasible doses of resveratrol reduced beta-amyloid plaque 
formation and OS in a transgenic mouse model of AD, despite 
no detection of resveratrol in the brain (166). Two months of 
dietary supplementation with pterostilbene, a resveratrol analog, 
also improved AD pathology and cognition in a transgenic 
mouse model of aging (106). In light of bioavailability studies, 
further exploration of the potential beneficial roles of RWP in 
AD and PD models should include the use of specific metabo-
lites that with repeated dosing are known to accumulate in the 
brain. This in turn signifies that the plasma pharmacokinetics 
and tissue distribution of polyphenols and their metabolites 
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FigURe 3 | Red wine polyphenols metabolism and absorption in the human digestive system. Schematic depiction of the metabolic fate of red wine 
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have to be delineated more extensively, using advanced methods 
such as high-performance liquid chromatography (HPLC), mass 
spectrometry (MS), and liquid chromatography (LC) (167). 
Improving the bioavailability of RWP with therapeutic implica-
tions for AD and PD entails ensuring efficient transport across 
the blood–brain barrier (BBB) and delivery to the brain (168). 
Many recent advances report that RWP metabolites are able to 
cross the BBB and accumulate in the brain at pharmacologically 
relevant nanomolar or micromolar concentrations (136, 157, 
169). However, the interaction of polyphenolic metabolites 
with the BBB has not been sufficiently investigated. Polyphenols 
penetration through the BBB is dependent on the degree of 
lipophilicity of each compound, with less polar metabolites 
(e.g., O-methylated derivatives) capable of greater brain uptake 
in comparison to the more polar metabolites (e.g., sulfated and 
glucuronidated derivatives) (170). Stereoactive interaction with 
specific efflux transporters expressed on endothelial cells of the 
BBB has been observed, and is another factor determining brain 
permeability (171). An exciting new development in surmounting 

the BBB obstacle and ensuring better polyphenol delivery into 
the brain is represented by new delivery systems, such as those 
based upon lipid-core nanoparticles (entrapment of polyphenols 
in lipid vesicles) (172). Thus, resveratrol concentration in brain 
tissue was significantly increased by intraperitoneal administra-
tion of nanoencapsulated resveratrol, and the polyphenol was 
able to rescue rats from the damaging effects of Aβ injection 
much better than free resveratrol (173, 174). Further knowledge 
gleaned from much-needed research on the bioavailability of 
RWP, and on delivery of metabolites across the BBB, will be 
especially useful for conducting better-designed human clinical 
interventional trials.

CliNiCAl iNTeRveNTiONAl STUDieS

Although much is known about the potential antioxidant and 
neuroprotective roles of RWP, few clinical trials have been 
conducted to quantify therapeutic benefits in AD and PD, with 
conflicting conclusions at best (175). Published clinical trials of 
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resveratrol were largely focused on characterizing its pharma-
cokinetics and metabolism, or improve specific parameters, such 
as memory or physical performance in adults (e.g., ClinicalTrials.
gov: NCT01126229). In recent studies, resveratrol was found to 
be safe and reasonably well-tolerated at doses of up to 5 g/day in 
humans (176). Single oral doses (250 and 500 mg) of resveratrol 
given to healthy adults improved cerebral blood flow, but not 
short-term cognitive performance (177). Three clinical studies 
have been carried out that explored the benefits of resveratrol 
for treating individuals having AD or MCI, a clinical condition 
that is often a precursor to Alzheimer’s dementia. Between 
2008 and 2010, resveratrol supplementation was investigated 
in a randomized placebo-controlled phase III trial involving 27 
mild-to-moderate AD individuals, with the primary endpoint 
of assessing Alzheimer’s Disease Assessment Scale-cognitive 
subscale (ADAS-cog scores) (clinicaltrials.gov NCT00678431). 
However, results from this study have not yet been published. 
In 2013 and 2014, a multi-center phase II trial of resveratrol 
was conducted in 119 individuals with mild-to-moderate AD. 
Participants were randomized to either placebo or resveratrol 
(500–2,000  mg daily). Resveratrol was safe and well-tolerated 
and, even though only 1% of resveratrol reached central nervous 
system, AD biomarker changes were associated with resveratrol 
treatment. These include a significantly less pronounced decline 
in cerebrospinal fluid and plasma amyloid-beta levels (6% vs. 
20%, resveratrol-treated group vs. placebo, respectively), sug-
gesting that resveratrol had indeed engaged its target in the brain 
(178). Another ongoing, multi-interventional phase II clinical 
trial involves 330 subjects with MCI who were given resveratrol 
supplementation as one of six different interventions or placebo, 
with the ADAS-cog score as the primary outcome (clinicaltrials.
gov NCT01219244).

In relation to PD, a large prospective study carried out over 
two decades involving almost 130,000 individuals showed 
that the habitual intake of flavonoid-rich food and beverages, 
including red wine, was significantly related to a reduced risk 
of developing the disease (40% lower PD risk for participants 
in the highest quintile compared to those in the lowest quintile) 
(59). Nevertheless, the authors caution that the results must 
be confirmed by other large prospective studies carried out on 
populations with a wider heterogeneity in dietary flavonoid 
intake.

Rounding up, more convincing large-scale clinical trials 
utilizing RWP are needed, together with suitable biomarkers, to 
objectively assess a risk reduction of AD and PD. Clinical inter-
ventional trials must be prioritized to support extensive evidence 
derived from in vitro and in vivo studies.

CONClUSiON AND FUTURe DiReCTiONS

An increasingly accepted notion is that wine-related com-
pounds exert neuroprotective and neurorescue effects not only 
through antioxidant activities but also via a combined ability 
to antagonize amyloid aggregation, suppress neuroinflamma-
tion, modulate signaling pathways, and decrease mitochondrial 

dysfunction. From the extensive in vitro and in vivo experimen-
tal evidence reviewed, RWP undoubtedly have strong potential 
to alleviate and/or attenuate the neurodegenerative process in 
AD and PD, making them ideal candidates for counteracting the 
multifaceted nature of these conditions. Yet, we have to be cau-
tious in extrapolating findings from in vitro studies to the in vivo 
situation, since much of the existing in vitro data have utilized 
non-physiological concentrations of RWP and used the original 
molecule (aglycone) instead of the in vivo metabolites produced 
upon digestion and/or metabolic processing. Indeed, much 
of the recent data have consistently shown that the biological 
activities of metabolites may differ from the parent compound. 
At the same time, in order to efficiently translate experimental 
insights on RWP into clinical therapeutic benefit, it is essential 
to better characterize their metabolism, absorption profiles, and 
factors that influence bioavailability (179). Metabolism of natu-
ral compounds, such as RWP may be problematic in the clinical 
setting since they are metabolized by the same enzymes (e.g., 
cytochrome P450 enzymes and glucuronosyltransferases) that 
also metabolize clinically important drugs, such as warfarin and 
digoxin. In this manner, natural polyphenols may significantly 
alter the pharmacokinetic and pharmacodynamic properties of 
administered drugs, potentially increasing risk of toxicity (180, 
181). To circumvent the drawback of poor biodisponibility, new 
delivery systems, such as the encapsulation of bioactive RWP in 
lipid nanocapsules appear to provide a promising frontier that 
could pave the way for the development of brain-targeted nutra-
ceutical products (182). However, administration of nanoparticle 
preparations for prolonged periods may give rise to toxicity of the 
carriers with which the active compounds are complexed (181). 
Overall, resveratrol is the RWP most intensely studied to date. 
In the future, more attention should be paid to other phenolic 
components in grape or wine, including exploring the effect of 
novel combinations in formulations containing red wine phe-
nols (e.g., GSE, Bioactive Dietary Polyphenol Preparation) for 
synergistic neuroprotective effects. Lastly, intervention studies 
will be required to utilize better-characterized disease biomark-
ers and more rigorous clinical outcomes. Ultimately, only the 
success of the clinical research will determine the relevance of 
RWP to be incorporated as key components in clinical practice 
or dietary guidelines to modulate the onset and/or progression 
of AD and PD.
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