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Abstract: Time-restricted feeding (TRF) is a form of intermittent fasting that involves having a

longer daily fasting period. Preliminary studies report that TRF improves cardiometabolic health

in rodents and humans. Here, we performed the first study to determine how TRF affects gene

expression, circulating hormones, and diurnal patterns in cardiometabolic risk factors in humans.

Eleven overweight adults participated in a 4-day randomized crossover study where they ate between

8 am and 2 pm (early TRF (eTRF)) and between 8 am and 8 pm (control schedule). Participants

underwent continuous glucose monitoring, and blood was drawn to assess cardiometabolic risk

factors, hormones, and gene expression in whole blood cells. Relative to the control schedule, eTRF

decreased mean 24-hour glucose levels by 4 ± 1 mg/dl (p = 0.0003) and glycemic excursions by

12 ± 3 mg/dl (p = 0.001). In the morning before breakfast, eTRF increased ketones, cholesterol, and the

expression of the stress response and aging gene SIRT1 and the autophagy gene LC3A (all p < 0.04),

while in the evening, it tended to increase brain-derived neurotropic factor (BNDF; p = 0.10) and also

increased the expression of MTOR (p = 0.007), a major nutrient-sensing protein that regulates cell

growth. eTRF also altered the diurnal patterns in cortisol and the expression of several circadian

clock genes (p < 0.05). eTRF improves 24-hour glucose levels, alters lipid metabolism and circadian

clock gene expression, and may also increase autophagy and have anti-aging effects in humans.

Keywords: intermittent fasting; time-restricted feeding; meal timing; circadian rhythms; circadian

system

1. Introduction

Intermittent fasting (IF) covers a broad class of interventions that alternate periods of eating

and extended fasting. IF interventions include periodic 24-hour fasts, intermittent energy restriction

(e.g., the 5:2 diet), and time-restricted feeding. In animal models, IF has been found to improve

cardiometabolic health, reduce cancer incidence, slow tumor growth, regenerate organs by increasing

stem cell production, and increase lifespan [1,2]. In humans, data on IF is limited but suggest that it

decreases body weight, insulin levels, blood pressure, inflammation, and appetite, and that it improves

insulin sensitivity and lipid profiles [1,3–5]. These clinical benefits are driven by a reduction in insulin

levels; improved insulin signaling; a reduction in oxidative stress; an increase in antioxidant defenses
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and autophagy; a reprogramming of aging-related pathways and hormones such as sirtuin 1 (SIRT1),

brain-derived neurotrophic factor (BDNF), mechanistic target of rapamycin (mTOR), and insulin-like

growth factor (IGF-1); and other mechanisms [6,7].

While the benefits of some types of IF may stem mostly or entirely from energy restriction [8,9],

one form of IF, called time-restricted feeding (TRF), has demonstrated benefits independent of energy

restriction in both animals [10–17] and humans [18,19]. Since the median American eats over a 12-hour

period [20], we define TRF as eating within a ≤10-hour period and fasting for at least 14 hours per day.

(Although TRF can include Ramadan fasting, we consider Ramadan fasting to be a separate type of IF.)

Studies in rodents report that TRF reduces body weight, improves glycemic control, lowers insulin

levels, reduces blood pressure, prevents hyperlipidemia, decreases hepatic fat, improves inflammatory

markers, slows tumor growth, and increases lifespan, even when food intake is matched to the control

group [10–17,21–40]. To date, there have been nine pilot-sized trials of TRF in humans [18,19,41–47].

Interestingly, TRF improved weight loss and cardiometabolic endpoints—such as insulin levels, insulin

sensitivity, and blood pressure—when participants ate early or in the middle of the day [18,19,41–45],

but worsened cardiometabolic health or had null effects when participants ate late in the day [46–48].

The circadian system may explain these dichotomous time-of-day effects. The circadian system

orchestrates approximately 24-hour rhythms in metabolism, physiology, and behavior. It produces these

rhythms through coordinated transcriptional–translational feedback loops involving clock genes such

as BMAL1, CLOCK, PER1/2, and CRY1/2, which in turn cause oscillations in a myriad of downstream

targets. For instance, insulin sensitivity and the thermic effect of food exhibit 24-hour rhythms, peaking

in the morning [49]. A large number of plasma lipids [50] and age-related hormones such as cortisol,

insulin, and growth hormone [51,52] also vary across the 24-hour day. Many of these metabolic

and hormonal rhythms peak in the morning and are downregulated in the evening, implicating the

morning as optimal for food intake [49]. Therefore, eating in sync with these rhythms may improve

cardiometabolic health, as suggested by a growing number of human studies [53–58]. In contrast, eating

in circadian misalignment with these rhythms by eating late in the day worsens several cardiometabolic

endpoints, particularly glucose tolerance [59–62]. Therefore, TRF interventions where food intake is

limited to early in the day may be particularly effective at improving cardiometabolic health.

We recently conducted the first clinical trials of early time-restricted feeding (eTRF), which

combines the benefits of intermittent fasting with eating early in the day to be in sync with circadian

rhythms in metabolism [18,19]. eTRF is tantamount to eating dinner in the mid-afternoon and fasting

for the rest of the day. In our first 5-week crossover study, we found that eTRF reduces insulin levels,

improves insulin sensitivity, lowers blood pressure, and decreases lipid peroxidation in men with

prediabetes [18]. In our second 4-day crossover study, we investigated the effects of eTRF on energy

metabolism in adults who are overweight and found that eTRF does not affect energy expenditure but

increases fat oxidation, reduces the hunger hormone ghrelin, and improves subjective appetite [18,19].

Here, we extend our analyses from the 4-day trial to perform the first study of how TRF affects

diurnal patterns in cardiometabolic risk factors, selected hormones, and the expression of glycemic

and circadian clock genes in humans. As an exploratory aim, we also investigated the effects on the

expression of genes related to aging, autophagy, and oxidative stress. We hypothesized that eTRF

would decrease mean 24-hour glucose levels, positively impact hormones such as IGF-1 and BDNF,

and alter circadian clock gene expression.

2. Materials and Methods

2.1. Participants

This randomized controlled crossover study was approved by the Institutional Review Boards at

Pennington Biomedical Research Center (PBRC; Baton Rouge, LA; protocol number: 2014-038) and the

University of Alabama at Birmingham (Birmingham, AL; protocol number: 300001013). The study was

pre-registered on ClinicalTrials.gov (NCT02247076) and conducted in accordance with the Declaration

of Helsinki.

ClinicalTrials.gov
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Inclusion criteria targeted generally healthy adults aged 20–45 years old with a body mass index

(BMI) between 25.0 kg and 35.0 kg/m2, a body weight between 68.0 kg and 100.0 kg, a regular bedtime

between 21:30 and 24:00, and a regular menstrual cycle (if female). Individuals were excluded from

the study if: they had diabetes or other significant chronic conditions; regularly used antidiabetic

medications, steroids, beta blockers, adrenergic-stimulating agents, laxatives, or any medications or

supplements known to affect sleep, circadian rhythms, or metabolism (with the exception of caffeine,

which was allowed, except on the day of and prior to 24-hour testing); were pregnant or lactating;

used Depo Provera, an IUD, or a hormonal patch for birth control; or had changed their hormonal

birth control dose within the last 3 months. They were also excluded if they performed overnight

shift work, had irregular sleep and/or eating schedules, regularly fasted for more than 15 hours/day,

smoked or used nicotine/tobacco products within the last 3 months, consumed an average of more

than 3 servings of alcohol per day, or regularly engaged in competitive sport training. All participants

provided written informed consent and were provided a stipend for their participation.

2.2. Study Design

This study was previously described in [19], and all Consolidated Standards of Reporting Trials

(CONSORT) details can be found in the primary manuscript. In brief, participants were randomized to

follow either the control schedule (eat between 8:00 and 20:00, a 12-hour eating period) or an eTRF

schedule (eat between 08:00 and 14:00, a 6-hour eating period) for 4 days and then to crossover to

the other arm after a 3.5–5-week washout period. Randomization was stratified by sex in blocks of 4.

On days 1–2, participants followed their assigned eating schedule on their own and were instructed

to maintain their habitual sleep and exercise habits. On days 3–4, participants continued to follow

their assigned schedule but ate only food provided by study staff while under supervision. They also

refrained from caffeine and exercise on days 3–4, to avoid influencing study outcomes. Breakfast, lunch,

and dinner were served at 08:00, 14:00, and 20:00 for the control schedule, and at 08:00, 11:00, and

14:00 for the eTRF schedule (Figure 1). The three daily meals (50% carbohydrate, 35% fat, 15% protein)

were matched across arms and were designed to meet weight-maintenance energy requirements under

sedentary conditions, as described in [19]. No other food or beverages containing calories were allowed,

and all food intake was matched across arms, with no weigh-backs allowed. On day 4, participants ate

three identical meals, while completing a 24-hour stay in a respiratory chamber wearing a continuous

glucose monitor. The mean physical activity level during the 24-hour testing was kept at a low value

of 1.16 ± 0.10. Blood samples were collected in the fasting state at 20:00 on day 3 (evening, PM) and

immediately after exiting the chamber at ~07:30 on day 5 (morning, AM). The evening blood draws

were taken immediately before dinner in the control arm. Therefore, both arms fasted for 6 hours prior

to the evening draws.

–

–
–

–

–

 

Continuous Glucose Monitoring

Control

3 meals in 12 hrs

eTRF

3 meals in 6 hrs
~18 hours until next meal 

~12 hours until next meal
Brkfst
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33%
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33%
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Figure 1. Study Protocol. Eleven participants were randomized to eat between 08:00 and 20:00 (control

arm) or between 08:00 and 14:00 (early time-restricted feeding (eTRF) arm) for 4 days and then crossed

over to the other arm after a 3.5–5-week washout period. On day 4, they consumed 3 identical meals

that constituted one-third of their daily energy requirements, while undergoing 24-hour continuous

glucose monitoring. In addition, blood was drawn in the evening (PM) on day 3 and in the morning

(AM) on day 5 to measure serum analytes and gene expression.



Nutrients 2019, 11, 1234 4 of 16

2.3. Continuous Glucose Monitoring

Participants wore a continuous glucose monitor (CGM; Dexcom G4, Platinum CGM System,

San Diego, CA, USA) starting at approximately 08:30 on day 3 until 07:00 on day 5. The sensor

was inserted under the skin into the subcutaneous fat of the abdomen, as per the manufacturer’s

instructions, in the morning after breakfast on day 3. Participants returned for subsequent calibrations

at 11:00 and 20:00 on day 3 and then approximately every 12 hours thereafter. Data from 07:00 on

day 4 until 07:00 on day 5 were used to assess 24-hour glucose levels. Due to poor calibrations or

nurse error, some data were clearly invalid. Data were deemed to be valid and were included in the

analysis if the difference between the CGM and capillary measurements was less than 25 mg/dl for all

calibrations in the 24-hour measurement period. In total, six data sets met this criterion. Occasional

missing values (<0.06% of all data) were imputed by averaging adjacent values. Mean values were

calculated for each 3-hour postprandial period, while participants were awake (06:30–20:30) and asleep

(20:30–06:30), and for the whole 24-hour period. Each mean glucose value was calculated using the

glucose area under the curve (AUC) divided by the length of the corresponding period. In the case of

the 24-hour mean, we divided the 24-hour AUC value by 24 hours, which is equivalent to the estimated

average glucose (eAG). Glycemic excursions were calculated using the Mean Amplitude of Glycemic

Excursions (MAGE), which was tabulated using an Excel-enabled workbook called EasyGV [63].

2.4. Serum Chemistry

Cardiometabolic analytes and hormones were assessed in the fasting state in the morning and

evening. Glucose, total cholesterol, and triglycerides were measured on a DXC600 instrument (Beckman

Coulter, Inc.; Brea, CA, USA) using standard reagents. HDL cholesterol was measured using an

immunoinhibition assay (Trinity Biotech USA, Inc.; Jamestown, NY, USA, or FUJIFILM Wako Chemicals

USA Corporation; Richmond, CA, USA) on the same instrument. LDL cholesterol was calculated using

the Friedewald equation. Insulin and cortisol were measured using chemiluminescent immunoassays

on an Immulite 2000 instrument (Siemens Corporation; Washington, DC, USA). Homeostatic Model

Assessment of Insulin Resistance (HOMA-IR), which is an estimate of insulin resistance, was calculated

as fasting insulin (mU/l) × fasting glucose (mg/dl)/405. Free fatty acids (FFA) and β-hydroxybutyrate

were run on a Sirrus Clinical Chemistry Analyzer (Stanbio Laboratory; Boerne, TX, USA), with the

former measured using Wako reagents (FUJIFILM Wako Chemicals USA Corporation; Richmond, VA,

USA). Human growth hormone (HGH) was run on an Automated Immunoassay Analyzer-990 (Tosoh

Bioscience, Inc.; South San Francisco, CA, USA) using immunofluorescence. BDNF was run using

an R&D Systems (Minneapolis, MN, USA) enzyme-linked immunosorbent assay (ELISA). IGF-1 and

IGF-binding proteins 1 and 3 (IGFBP-1 and IGFBP-3) were run using American Laboratory Products

Company (ALPCO; Salem, NH, USA) ELISAs. The manufacturer’s instructions were followed for

all assays.

2.5. Gene Expression

The expression of several genes related to glucose metabolism, the circadian system, fasting,

autophagy, and oxidative stress was also assessed in the morning and evening. The full set of genes and

their accession numbers are listed in Table S1 (Supplementary Materials). Whole blood was collected in

Tempus™ Blood RNA tubes, and mRNA was later isolated from frozen samples using Tempus™ Spin

RNA Isolation Kit (Applied Biosystems; Foster City, CA, USA). Extracted mRNA was included in the

analysis if the concentration exceeded 55 ng/µl and the A260/A280 and A260/A230 ratios were between

2.12–2.26 and 2.07–3.21, respectively, as determined by a DeNovix DS-11 Spectrophotometer (DeNovix,

Inc.; Wilmington, DE, USA) reading. These criteria were met at all four time points in eight of the 11

subjects. Samples were analyzed on the NanoString nCounter FLEX Analysis System (NanoString

Technologies, Inc.; Seattle, WA, USA), following the manufacturer’s instructions. Data files were

imported to the NanoString software nSolver 4.0, normalized using the geometric mean of six selected

housekeeping genes (Table S1), and analyzed as fold changes.
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2.6. Statistical Methods

Statistical significance was assessed per-protocol using two-sided tests with a type I error rate of

α = 0.05. Treatment effects and p-values were calculated using a linear mixed model with heterogeneous

compound symmetry in the software SAS (version 9.4; Cary, NC, USA). The Satterthwaite method was

used for calculating the degrees of freedom, with participants serving as the random effect, and the

treatment, sequence, period, and sex chosen as fixed effects. Treatment effects (∆) are reported as least

squares mean ± standard error of the mean (SEM). Data in the figures is displayed as raw mean ± SEM.

Glycemic and circadian gene expression was a pre-specified outcome, while the expression of all

other genes was considered to be exploratory and was adjusted for multiple comparisons using the

Benjamini–Hochberg method, with a false discovery rate of 0.05.

3. Results

3.1. Participant Characteristics

Participant characteristics, the participant flow diagram, and adverse events were previously

reported in [19]. In brief, 18 generally healthy participants were enrolled, and 11 participants completed

both arms of the intervention. The 11 adults (7 men and 4 women; 64% African-American, 27%

Caucasian, 9% Other) were aged 32 ± 7 years (mean ± standard deviation), had a mean BMI of 30.1 ±

2.7 kg/m2, and a mean fasting glucose of 92 ± 5 mg/dl.

3.2. 24-Hour Glucose Levels

As shown in Figure 2, eTRF changed temporal patterns in 24-hour glucose levels, as measured

by CGM. Mean 3-hour postprandial glucose levels were 3 ± 1 mg/dl lower after breakfast (p = 0.05)

but unchanged after lunch (2 ± 3 mg/dl; p = 0.51) and dinner (2 ± 3 mg/dl; p = 0.50) (data not

shown). Although eTRF did not significantly affect mean glucose levels while participants were awake

(06:30–22:30; p = 0.17), it lowered mean levels while they slept by 7 ± 2 mg/dl (22:30–6:30; p = 0.006).

When aggregated across the day, eTRF reduced mean 24-hour glucose levels by 4 ± 1 mg/dl (p = 0.0003).

eTRF also reduced glycemic excursions, as measured by MAGE, by 12 ± 3 mg/dl (p = 0.001).

3.3. Glycemic Markers

Figure 3 shows the fasting values of glycemic markers in both the morning and evening. In the

morning, eTRF lowered fasting glucose and insulin by 2 ± 1 mg/dl (p = 0.02) and 2.9 ± 0.4 mU/l

(p < 0.0001), respectively. As a result, HOMA-IR was lower by 0.73 ± 0.11 (p < 0.0001). This was

accompanied by a 25 ± 9% increase in IRS2 gene expression (p = 0.01). In the evening, eTRF increased

fasting insulin and HOMA-IR by 4.5 ± 1.6 mU/l (p = 0.01) and 1.09 ± 0.43 (p = 0.02), respectively, but

did not affect glucose levels (p = 0.30). This was accompanied by a 4 ± 1% increase in AKT2 gene

expression (p = 0.003). There were no changes in GLUT1, GLUT4, or IRS1 expression at either time of

day (p ≥ 0.46). This was true regardless of whether or not a single outlier with ~10× higher GLUT1 and

GLUT4 expression was included in the analyses.
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≥

Figure 2. 24-Hour Glucose Levels. Relative to the control schedule, early time-restricted feeding

(eTRF) (A) changed the temporal profile of 24-hour glucose levels, as measured by continuous glucose

monitoring, particularly in the evening, (B) lowered mean glucose levels while asleep and decreased

24-hour mean glucose levels, and (C) lowered glycemic excursions as measured by Mean Amplitude of

Glycemic Excursions (MAGE). Error bars on panel (A) are suppressed for visual clarity. * p < 0.05.
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Figure 3. Glycemic Markers. Relative to the control schedule, early time-restricted feeding (eTRF)

decreased (A) fasting glucose, (B) fasting insulin, and (C) Homeostatic Model Assessment of Insulin

Resistance (HOMA-IR) in the morning (AM) and increased (B) fasting insulin and (C) HOMA-IR in the

evening (PM). (D) eTRF also increased the expression of the IRS2 and AKT2 genes in the morning and

evening, respectively. Data for GLUT1 and GLUT4 are shown excluding a participant whose expression

levels were ~10× higher than the sample mean. * p < 0.05.
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3.4. Lipids

Figure 4 displays the fasting values of lipids in both the morning and evening. In the morning,

eTRF increased LDL and HDL cholesterol by 9 ± 4 mg/dl (p = 0.02) and 3 ± 1 mg/dl (p = 0.03),

respectively, but did not affect levels of triglycerides (p = 0.29) or free fatty acids (p = 0.73). As a result,

total cholesterol was elevated by 10 ± 4 mg/dl (p = 0.04). eTRF also increased morning ketone levels,

as measured by β-hydroxybutyrate, by 0.03 ± 0.01 mM (p = 0.009), causing them to reach a plasma

concentration of 0.15 ± 0.6 mM. By contrast, in the evening, there were no differences in any lipid levels

(p ≥ 0.18). There were also no differences in the HDL/LDL cholesterol ratio in either the morning or

evening (p ≥ 0.54).
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Figure 4. Lipids. Relative to the control arm, early time-restricted feeding (eTRF) increased fasting

levels of (A) total cholesterol, (B) LDL cholesterol, (C) HDL cholesterol, and (F) β-hydroxybutyrate

(ketones) in the morning (AM) but did not affect levels of (D) triglycerides or (E) free fatty acids. (A–F).

Levels of all lipids were unaffected in the evening (PM). * p < 0.05.

3.5. Hormones

We also investigated the effects of meal timing on selected hormones that are thought to be

responsive to and/or mediate the beneficial effects of fasting (Figure 5). eTRF did not affect any of

the hormones in the morning (p ≥ 0.26), except cortisol, which tended to increase by 1.5 ± 0.9 µg/dl

(p = 0.10). In the evening, eTRF reduced cortisol levels by 1.4 ± 0.6 µg/dl (p = 0.03) and tended to

increase BDNF levels by 2.46 ± 1.34 ng/ml (p = 0.09). Apparent decreases in evening levels of IGF-1

and IGFBP-1 did not reach statistical significance (both p = 0.11), while IGFBP-3 and HGH levels were

unchanged (p ≥ 0.25).



Nutrients 2019, 11, 1234 8 of 16

≥ μ
μ

≥

 

−

≥

≥

AM PM
150

175

200

225

250

275
n
g
/m

l

IGF-1

Control

eTRF

AM PM
0.0

0.5

1.0

1.5

2.0

2.5

n
g
/m

l

HGH

Control

eTRF

AM PM
0.5

1.0

1.5

2.0

2.5

mg
/L

IGFBP-1

Control

eTRF

AM PM
0

10

20

30

n
g
/m

l

BDNF

Control

eTRF
#

AM PM
2.5

3.0

3.5

4.0

mg
/m

l

IGFBP-3

Control

eTRF

AM PM
0

5

10

15

20

25

mg
/d

l

Cortisol

Control
eTRF

*

#

A B

E

C

D F

Figure 5. Hormones. Relative to the control arm, early time-restricted feeding (eTRF) tended to increase

(F) cortisol levels in the morning (AM). In the evening, it lowered (F) cortisol and tended to increase

(E) brain-derived neurotrophic factor (BDNF). The hormones (A) insulin-like growth factor (IGF-1),

(B) IGF-binding protein 1 (IGFBP-1), (C) IGF-binding protein 3 (IGFBP-3), and (D) human growth

hormone (HGH) were not significantly different between arms. * p < 0.05, # p < 0.10.

3.6. Gene Expression

Figure 6 illustrates the effects of meal timing on the expression of genes related to (A) the circadian

clock, (B) longevity, (C) autophagy, and (D) oxidative stress. eTRF significantly increased the expression

of the circadian clock genes BMAL1 (8 ± 3%; p = 0.007), CRY1 (14 ± 2%; p < 0.0001), CRY2 (8 ± 4%;

p = 0.02), and RORA (12 ± 4%; p = 0.003) in the morning. In the evening, it decreased levels of PER1

(−10 ± 4%; p = 0.02) and increased (or tended to increase) levels of CRY1 (14 ± 4%; p = 0.006), CRY2

(8 ± 4%; p = 0.05), REV-ERBA (12 ± 6%; p = 0.08), and RORA (13 ± 4%; p = 0.006). CLOCK and PER2

were unaffected at both times of day (p ≥ 0.32). eTRF also increased levels of SIRT1 (10 ± 3%; p = 0.004)

and LC3A (22 ± 5%; p = 0.001) in the morning and increased levels of MTOR (9 ± 3%; p = 0.007) in the

evening. The autophagy gene ATG12 was elevated (5 ± 2%; p = 0.04) in the evening, but this effect was

no longer significant after adjustment for multiple comparisons. The expression of all other genes was

unchanged (p ≥ 0.13).
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Figure 6. Gene Expression in Whole Blood. (A) Early time-restricted feeding (eTRF) changed the

expression of several circadian clock genes, including BMAL1, PER1, CRY1, CRY2, REV-ERBA, and

RORA in the morning (AM) and/or evening (PM). It also increased the expression of (B) the longevity

genes SIRT1 in the morning and MTOR in the evening. (C) The autophagy genes LC3A and ATG12

were elevated in the morning and evening, respectively, although the latter was no longer significant

after adjustment for multiple comparisons. (D) The expression of oxidative stress genes was unaffected.

Genes in panel A were pre-specified outcomes, while genes in panels B–D were exploratory and had

their p-values adjusted for multiple comparisons. # p < 0.10 (applied only to pre-specified genes in

panel A), * p < 0.05, ** p < 0.007 (significant after adjustment for multiple comparisons, applied only to

exploratory genes in panels B–D).
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4. Discussion

Time-restricted feeding (TRF) is a novel form of intermittent fasting that improves cardiometabolic

health, slows tumor progression, delays aging, and increases lifespan in rodents [10–17,21–40]. Pilot

studies in humans similarly suggest that TRF improves clinical outcomes such as body weight, blood

pressure, and insulin sensitivity [18,19,41–47], at least when food intake is limited to early or the middle

of the day. These time-of-day effects may be explained by the circadian system, as eating in alignment

with circadian rhythms in metabolism appears to improve cardiometabolic health [53–58]. However,

the molecular mechanisms underlying TRF in humans were unknown. Here, to our knowledge and

excluding studies on Ramadan fasting, we performed the first clinical trial to determine how TRF

affects gene expression and diurnal patterns in cardiometabolic risk factors in humans. Our study is

the first investigation into the molecular mechanisms underlying TRF in humans, as well as the second

clinical trial of early time-restricted feeding (eTRF) in humans.

Relative to the control schedule, eTRF decreased mean 24-hour levels of glucose. More than two

dozen studies have previously reported diurnal rhythms in glycemic control, with glucose tolerance

peaking in the morning [49]. The circadian system causes both insulin sensitivity and first-phase insulin

secretion to be upregulated in the morning, and human studies report that the incremental glucose

AUC is up to two-fold higher in the evening relative to the morning [64]. Since glucose tolerance is

highest in the morning, we expected that shifting a majority of daily food intake to the morning would

decrease mean 24-hour glucose levels. Indeed, the largest temporal differences in plasma glucose were

observed in the late evening and while sleeping. In fact, in the control arm, glucose levels remained

elevated during nearly half of the sleep episode. Given that the control arm was designed to represent

median adult eating times in the US, eating dinner at 8 pm leads to a prolonged elevation of glucose

levels while asleep and may have adverse metabolic consequences, such as impairing fat oxidation [65].

In addition to lowering mean 24-hour glucose levels, eTRF also lowered fasting glucose and insulin

in the morning, increased fasting insulin in the evening, and decreased 24-hour glycemic excursions.

The decreased glucose and insulin in the morning were accompanied by an increase in AKT2 expression.

Since the protein Akt2 is a downstream target of insulin signaling via the phosphatidylinositol 3-kinase

(PI3K) pathway and plays a key role in insulin-stimulated glucose uptake, this suggests that eTRF

may improve insulin signaling in the morning. This is consistent with data from our previous trial

showing that 5 weeks of eTRF reduced insulin levels and improved insulin sensitivity during an oral

glucose tolerance test administered in the morning [18]. Although we are not certain how to interpret

the evening increases in fasting insulin and expression of the insulin signaling protein IRS2 (an insulin

receptor substrate that modulates mitogenic and anti-apoptotic signaling pathways) in the eTRF arm,

we note that they may be reflective of differences in cumulative energy intake at that time point during

the day. The decrease in glycemic excursions was somewhat contrary to our expectations. We would

have expected peak postprandial glucose levels to be higher in the eTRF arm since meals were eaten

in short succession. However, we found the opposite to be true. We speculate that one possible

explanation for the decrease in peak glucose levels, particularly at lunchtime, may be that circulating

insulin levels were still elevated because breakfast was still being digested and therefore the β-cells in

the pancreas did not have to be “re-awakened” to secrete insulin, eliminating the lag time between

rising glucose and insulin levels and thereby lessening any spikes in plasma glucose. Importantly,

our data suggest that TRF and any other approach where meals are eaten in short succession before the

prior meal is fully digested may lower glycemic excursions—conferring additional glycemic benefits

through mechanisms independent of the circadian system. This suggests that TRF interventions where

the inter-meal interval is short may be particularly effective at improving 24-hour glucose levels.

Conversely, we speculate that TRF interventions where meals are eaten too far apart (e.g., more than

4–5 hours apart), such as when the daily eating period is longer than 8–10 hours and/or involves only

2 meals/day, may be less effective at improving 24-hour glucose levels. This underscores the fact that

while IF interventions are often viewed as synonymous with a reduction in meal frequency, practicing
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IF and reducing meal frequency are not the same thing, and future studies on IF should investigate

whether the inter-meal interval and meal frequency influence health outcomes.

Lipids and hormones were also affected by meal timing. eTRF increased LDL and HDL cholesterol

in the morning, which may be attributed to the prolonged fasting period and greater reliance on fat

oxidation in the eTRF arm [19]. It will be important to confirm in future studies that the slight increase

in both LDL and HDL cholesterol in the morning is not pathophysiologic. However, we did not observe

any increases in triglycerides and free fatty acids, as would be expected from the extended fasting.

These results are similar to those reported in [42] but contrast with those reported in [18]. The reasons

for the latter dissimilarity are unclear but may be due to differences in the intervention duration, the

study population, or other factors. eTRF also increased β-hydroxybutyrate in the morning, relative

to the control arm, thus demonstrating that even short-term daily fasting can modestly increase

circulating ketones. Elevated ketone levels reduce oxidative stress, preserve lean mass [66], and have

other metabolic effects such as decreasing hunger, although it is unclear whether the modest changes

that we observed would be clinically significant. Among the hormonal endpoints, cortisol, which is a

metabolic and circadian hormone, tended to increase in the morning and decrease in the evening. This

suggests that eTRF may have increased the amplitude of the cortisol rhythm, providing a mechanism

through which meal timing may impact the circadian system. Therefore, contrary to widespread belief,

meal timing may directly impact the central circadian clock. Of the growth-related hormones, eTRF

tended to elevate BDNF levels in the evening. BNDF promotes neuronal growth, development, and

survival and is widely known to be increased by intermittent fasting in rodents [6]. Our study is one of

the first trials to demonstrate that intermittent fasting can increase BDNF levels in humans. Although

we additionally expected to observe a decrease in IGF-1, which is associated with cancer risk and aging,

declines in IGF-1 and IGFBP-1 in the evening did not quite reach statistical significance (both p = 0.11).

We also measured diurnal changes in gene expression. Only 4 days of eTRF surprisingly

induced wide-sweeping changes in circadian clock gene expression, with 6 out of 8 circadian genes

affected. Our data are corroborated by a trial reporting that a single bout of breakfast skipping

changes the postprandial expression of several clock genes in whole blood [67], suggesting that a

tightly-controlled, bidirectional feedback loop exists between meal timing and the circadian system.

We also detected changes in several exploratory gene targets. Both SIRT1 and LC3A were upregulated in

the morning before breakfast, while MTOR was upregulated in the evening. mTOR is a nutrient-sensing

phosphatidylinositol 3-kinase-related kinase, which is stimulated by insulin, protein, and growth

factors to drive protein synthesis and regulate cell growth, differentiation, and metabolism. Its observed

upregulation in the evening likely mirrored the increase in fasting insulin. SIRT1 is nicotinamide

adenosine dinucleotide (NAD)-dependent deacetylase that promotes insulin secretion and action;

upregulates fat metabolism; protects against inflammation, oxidative stress, and DNA damage;

increases telomere stability; and extends lifespan [68]. The increase in SIRT1 expression in the morning

suggests that eTRF may also promote longevity in humans, as it does in animals [34]. A recent study

in rodents found that at least 40% of the lifespan-extending effects of caloric restriction could instead

be attributed to TRF [34]. Lastly, eTRF increased LC3A expression by 22% in the morning at the end of

the 18-hour fast. LC3A encodes an essential structural component of autophagosomal membranes, and

autophagy has been shown to play a major role in protecting against multiple chronic diseases such

as diabetes, heart disease, cancer, and neurodegenerative diseases, by recycling damaged and used

proteins and organelles. Increasing autophagy may have anti-aging or rejuvenating effects. Although

no previous studies examining TRF as a meal timing intervention have investigated autophagy in

either animals or humans, other studies on intermittent fasting conclude that several of the benefits of

intermittent fasting are mediated through enhanced autophagy [69,70]. By comparison, we observed

no changes in the expression of the four antioxidant genes measured.

This study has several limitations. Although our study was highly rigorous in design, the sample

size was small, and several of our endpoints were likely underpowered. For instance, substantial

decreases in IGF-1 and IGFBP-1 (both p = 0.11) and increases in NOS3 gene expression (p = 0.13),
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which would provide further evidence that eTRF may slow aging and reduce cancer risk, did not reach

statistical significance. Thus, our null findings for serum analytes and genes should be interpreted

with caution, and these targets need to be re-tested in larger trials. Similarly, because some of our CGM

data was not well-calibrated and had to be excluded, resulting in a smaller sample size, such favorable

data should also be viewed more cautiously. Although, in this case, prior studies do concur that

shifting food intake to early in the day improves mean daily glucose levels [42,54]. Second, our study

intervention was only 4 days, which may be insufficient for circadian and/or metabolic adaptation to

occur. Third, with the exception of glucose, all endpoints were measured at only two times of day.

We lack data on endpoints in the postprandial state and also while sleeping. Because some endpoints,

such as autophagy, are likely maximally upregulated during sleep, we may have missed detecting

or underestimated the effect sizes of diurnal changes in several endpoints. Also, although the PM

blood draws were taken after a 6-hour fast in both arms, there were differences in cumulative food

intake between the study arms, which may have impacted the endpoints measured in the evening.

In our trial, we were not able to draw blood at multiple time points throughout the day while our

participants resided in the respiratory chamber, but future studies would benefit from measuring these

endpoints across the 24-hour day. Lastly, gene expression data are known to be limited in nature and

not necessarily reflective of changes in protein levels or activation.

Collectively, our data suggest that eTRF improves several facets of health through both circadian-

and fasting-related mechanisms. eTRF improves glycemic control by lowering 24-hour glucose levels,

reducing glycemic excursions, and potentially by improving insulin signaling. Importantly, some of

these improvements in glycemic excursions may be driven not only by eating earlier in the day but

also by having a short inter-meal interval, suggesting that TRF interventions with longer inter-meal

intervals may be less effective at improving glucose levels. We also found that eTRF alters diurnal

patterns in fasting cholesterol, ketones, cortisol, and circadian clock genes; in particular, it modestly

increases ketone levels in the morning and improves the amplitude of the cortisol rhythm. Finally,

eTRF favorably affects hormones and genes related to longevity and autophagy such as BDNF, SIRT1,

and LC3A. These important findings demonstrate that eTRF improves cardiometabolic health, alters

diurnal rhythms, and may have anti-aging effects. Further research in humans is needed to replicate

and extend these results.
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